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Abstract. We study some Riemannian metrics on the space of smooth regular curves in the plane,
viewed as the orbit space of maps fromS1 to the plane modulo the group of diffeomorphisms ofS1,
acting as reparametrizations. In particular we investigate the metric, for a constantA > 0,

GAc (h, k) :=
∫
S1
(1 + Aκc(θ)

2)〈h(θ), k(θ)〉|c′(θ)| dθ

whereκc is the curvature of the curvec andh, k are normal vector fields toc. The termAκ2 is
a sort of geometric Tikhonov regularization because, forA = 0, the geodesic distance between
any two distinct curves is 0, while forA > 0 the distance is always positive. We give some lower
bounds for the distance function, derive the geodesic equation and the sectional curvature, solve the
geodesic equation with simple endpoints numerically, and pose some open questions. The space
has an interesting split personality: among large smooth curves, all its sectional curvatures are≥ 0,
while for curves with high curvature or perturbations of high frequency, the curvatures are≤ 0.

1. Introduction

This paper arose from the attempt to find the simplest Riemannian metric on the space
of 2-dimensional ‘shapes’. By a shape we mean a compact simply connected region in
the plane whose boundary is a simple closed curve. By requiring that the boundary curve
has various degrees of smoothness, we get not just one space but a whole hierarchy of
spaces. All these spaces will include, however, a core, namely the space of all shapes
with C∞ boundary curves. We expect that the most natural shape spaces will arise as the
completions of this core space in some metric, hence we take this core as our basic space.
Note that it is the orbit space

Be(S
1,R2) = Emb(S1,R2)/Diff (S1)
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of the space of allC∞ embeddings ofS1 in the plane, under the action by composition
from the right by diffeomorphisms of the circle. The space Emb(S1,R2) is a smooth
manifold, in fact an open subset of the Fréchet spaceC∞(S1,R2), and it is the total space
of a smooth principal bundle with baseBe(S1,R2).

In fact, most of our results carry over to the bigger orbit space of immersions mod
diffeomorphisms:

Bi(S
1,R2) = Imm(S1,R2)/Diff (S1).

This action is not quite free (see 2.4 and 2.5), hence this orbit space is an orbifold (see 2.5)
and not quite a manifold. There is the slightly smaller space Immf (see 2.1) of immersed
curves where diffeomorphisms act freely, the total space of a principal fiber bundle with a
natural connection admitting parallel transport. Existence of horizontal curves, however,
holds also in the big space Imm (see 2.5) which will be one of the weapons in our hunt
for geodesics onBi .

The second author was led to study the spaceBe from its relevance to computer vision.
To understand an image of the world, one needs to identify the most salient objects present
in this image. In addition to readily quantifiable properties like color and area, objects
in the world and their projections depicted by 2D images possess a ‘shape’ which is
readily used by human observers to distinguish, for example, cats from dogs, BMW’s
from Hondas, etc. In fact people are not puzzled by what it means to say two shapes
are similar but rather find this a natural question. This suggests that we construct, on
some crude level, a mental metric which can be used to recognize familiar objects by the
similarity of their shapes and to cluster categories of related objects like cats. Incidentally,
immersions also arise in vision when a 3D object partially occludes itself from some
viewpoint, hence its full 2D contour has visible and invisible parts which, together, form
an immersed curve in the image plane.

It is a central problem in computer vision to devise algorithms by which computers
can similarly recognize and cluster shapes. Many types of metrics have been proposed for
this purpose [7]. For example, there areL1-type metrics such as the area of the symmetric
difference of the interiors of two shapes. And there areL∞-type metrics such as the
Hausdorff metric: the maximum distance of points on either shape from the points on
the other or of points outside one shape from points outside the other. These metrics will
come up below, but the starting point of this investigation was whether one could use the
manifold structure on the space of shapes and define anL2-type metric by introducing a
Riemannian structure on the space.

Such questions have also arisen in Teichmüller theory and string theory, where the
so-called Weil–Peterssen metric on the space of shapes (also called the ‘universal Teich-
müller space’) has been much studied. In a second part of this paper, we will compare our
metric to this remarkable (homogeneous!) metric.

In this paper, we sought the absolutely simplest Riemannian metric that the spaceBi
supports. The most obvious Diff(S1)-invariant weak Riemannian metric on the space of
immersions is theH 0-metric:

G0
c(h, k) =

∫
S1

〈h(θ), k(θ)〉|c′(θ)| dθ
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wherec : S1
→ R2 is an embedding defining a point inBe andh, k are vector fields

along the image curve, defining two tangent vectors to Imm(S1,R2) at c. This induces
a Diff(S1)-invariant weak Riemannian metric on the space of all immersions and on
Emb(S1,R2), and for the latter space it induces a weak Riemannian metric on the base
manifoldBe.

Surprisingly, the Riemannian distance defined as the infimum of the arc length of
paths connecting two points inBe(S1,R2) turns out to be 0 (see 3.10)! This seems to
be one of the first examples where this purely infinite-dimensional phenomenon actually
appears.

Motivated by the proof of this result 3.10 we are led to consider the invariant Rieman-
nian metric 3.2.6, for a constantA > 0,

GAc (h, k) :=
∫
S1
(1 + Aκc(θ)

2)〈h(θ), k(θ)〉|c′(θ)| dθ

whereκc(θ) is the curvature ofc at c(θ). We will argue that this induces a reasonable
metric onBe(S1,R2), as the infimum of the arc lengths of paths connecting distinct points
is always positive. Another reason is that the length function` : Be(S1,R2) → R≥0 has
the following Lipschitz estimate 3.3.2 with respect to this Riemannian distance:√

`(C1)−

√
`(C0) ≤

1

2
√
A

distBe
GA
(C1, C2).

In fact, one can bound the Fréchet distance between two curves in terms of this metric
(see 3.5). The completion of the space of smooth curves in this metric contains all curves
whose curvature exists weakly as a finite signed measure (e.g. piecewiseC2 curves) and
is contained in the space of Lipschitz maps fromS1 to R2 modulo a suitable equivalence
relation (see 2.11).

The geodesic equation for the metricGA on Emb(S1,R2) and onBe(S1,R2) can
be found in 4.1.1: It is a highly non-linear partial differential equation of order 4 with
degenerate symbol, but which nonetheless seems to have a hypoelliptic linearization. If
A = 0, the equation reduces to a non-linear second order hyperbolic PDE, which gives a
well defined local geodesic spray. For anyA, the sectional curvature onBe(S1,R2) has
an elegant expression which can be found in 4.6.2 and 4.6.4. It is non-negative ifA = 0
and, for generalA, becomes strictly negative only if the curve has large curvature or the
plane section has high frequency. Of course we would have liked to solve the problem
of existence and uniqueness of geodesics forA > 0. We can, however, translate the
minimization of path length in our metric into an anisotropic Plateau-like problem: In
3.12 we show that a curve projects onto a geodesic inBe(S

1,R2) if and only if its graph
in [0,1] × R2 is a surface with given boundary at{0} × R2 and{1} × R2 which is critical
for the anisotropic area functional 3.12.3.

In 5.1 we determine the geodesic running through concentric circles and the equa-
tion for Jacobi vector fields along this geodesic. The solution of the ordinary differential
equation 5.1.1 describing this geodesic can be written in terms of elliptic functions. This
geodesic is no longer globally minimizing when the radius of the circles is large com-
pared to

√
A and has conjugate points when it hits this positive curvature zone. In 5.2
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we study geodesics connecting arbitrary distant curves, hence requiring long translations.
The middle parts of such geodesics appear to be approximated by a uniformly translating
‘cigar’-like curve with semi-circular ends of radius

√
A connected by straight line seg-

ments parallel to the direction of translation. These figures were found by numerically
minimizing a discrete form of the energy functional 3.12.1.

Finally, in 5.3 and 5.4, we have some further pictures of geodesics. First we examine
the formation of singularities when a small perturbation is propagated forward andA = 0.
Then we look at some geodesic triangles inBe whose vertices are ellipses with the same
eccentricity and center but different orientations. For various values ofA, we find that
these triangles have angle sums greater and less thanπ .

2. The manifold of immersed closed curves

2.1. Conventions. It is often convenient to use the identificationR2 ∼= C, giving us:

x̄y = 〈x, y〉 + i det(x, y), det(x, y) = 〈ix, y〉.

We shall use the following spaces ofC∞ (smooth) diffeomorphisms and curves, and we
give the shorthand and the full name:

Diff (S1), the regular Lie group ([6], 38.4) of all diffeomorphismsS1
→ S1 with its

connected components Diff+(S1) of orientation preserving diffeomorphisms
and Diff−(S1) of orientation reversing diffeomorphisms.

Diff 1(S
1), the subgroup of diffeomorphisms fixing 1∈ S1. We have diffeomorphically

Diff (S1) = Diff 1(S
1)× S1

= Diff +

1 (S
1)× (S1 o Z2).

Emb = Emb(S1,R2), the manifold of all smooth embeddingsS1
→ R2. Its tangent

bundle is given byT Emb(S1,R2) = Emb(S1,R2)× C∞(S1,R2).

Imm = Imm(S1,R2), the manifold of all smooth immersionsS1
→ R2. Its tangent

bundle is given byT Imm(S1,R2) = Imm(S1,R2)× C∞(S1,R2).

Immf = Immf (S1,R2), the manifold of all smooth free immersionsS1
→ R2, i.e., those

with trivial isotropy group for the right action of Diff(S1) on Imm(S1,R2).

Be = Be(S
1,R2) = Emb(S1,R2)/Diff (S1), the manifold of 1-dimensional connected

submanifolds ofR2 (see 2.3).

Bi = Bi(S
1,R2) = Imm(S1,R2)/Diff (S1), an infinite-dimensional ‘orbifold’; its points
are, roughly speaking, smooth curves with crossings and multiplicities (see
2.5).

Bi,f = Bi,f (S
1,R2) = Immf (S1,R2)/Diff (S1), a manifold, the base of a principal fiber

bundle (see 2.4.3).
We want to avoid referring to a path in our infinite-dimensional spaces like Imm or

Be as a curve, because it is then a ‘curve of curves’ and confusion arises when you refer
to a curve. So we will always talk ofpathsin the infinite-dimensional spaces, not curves.
Curves will be inR2. Moreover, if t 7→ (θ 7→ c(t, θ)) is a path, itst th curve will be
denoted byc(t) = c(t, ). By ct we shall denote the derivative∂tc, andcθ = ∂θc.
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2.2. Length and curvature on Imm(S1,R2). The volume form onS1 induced byc is
given by

vol : Emb(S1,R2) → �1(S1), vol(c) = |cθ | dθ, (1)

and its derivative is

d vol(c)(h) =
〈hθ , cθ 〉

|cθ |
dθ. (2)

We shall also use thenormal unit field

nc = i
cθ

|cθ |
.

The length function is given by

` : Imm(S1,R2) → R, `(c) =

∫
S1

|cθ | dθ, (3)

and its differential is

d`(c)(h) =

∫
S1

〈hθ , cθ 〉

|cθ |
dθ = −

∫
S1

〈
h,
cθθ

|cθ |
−

〈cθθ , cθ 〉

|cθ |3
cθ

〉
dθ (4)

= −

∫
S1

〈h, κ(c) · icθ 〉 dθ = −

∫
S1

〈h, nc〉κ(c) vol(c).

The curvature mapping is given by

κ : Imm(S1,R2) → C∞(S1,R), κ(c) =
det(cθ , cθθ )

|cθ |3
=

〈icθ , cθθ 〉

|cθ |3
, (5)

and is equivariant so thatκ(c ◦ f ) = ±κ(c) ◦ f for f ∈ Diff ±(S1). Its derivative is given
by

dκ(c)(h) =
〈ihθ , cθθ 〉

|cθ |3
+

〈icθ , hθθ 〉

|cθ |3
− 3κ(c)

〈hθ , cθ 〉

|cθ |2
. (6)

With some work, this can be shown to equal

dκ(c)(h) =
〈h, cθ 〉

|cθ |2
κθ +

〈h, icθ 〉

|cθ |
κ2

+
1

|cθ |

(
1

|cθ |

(
〈h, icθ 〉

|cθ |

)
θ

)
θ

. (7)

To verify this, note that both the left and right hand side are equivariant with respect
to Diff(S1), hence it suffices to check it for constant speed parametrizations, i.e.|cθ | is
constant andcθθ = κ|cθ |icθ . By linearity, it is enough to take the two casesh = aicθ and
h = bcθ . If we substitute these into formulas (6) and (7), the result is straightforward.
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2.3. The principal bundle of embeddingsEmb(S1,R2). We recall some basic results
whose proof can be found in [6]:

(A) The setEmb(S1,R2) of all smooth embeddingsS1
→ R2 is an open subset of the

Fréchet spaceC∞(S1,R2) of all smooth mappingsS1
→ R2 with theC∞-topology. It

is the total space of a smooth principal bundleπ : Emb(S1,R2) → Be(S
1,R2) with

structure groupDiff (S1), the smooth regular Lie group of all diffeomorphisms ofS1,
whose baseBe(S1,R2) is the smooth Fŕechet manifold of all submanifolds ofR2 of type
S1, i.e., the smooth manifold of all simple closed curves inR2 ([6, 44.1]).

(B) This principal bundle admits a smooth principal connection described by the hor-
izontal bundle whose fiberNc over c consists of all vector fieldsh along c such that
〈h, cθ 〉 = 0. The parallel transport for this connection exists and is smooth([6, 39.1 and
43.1]).

See 2.4.3 for a sketch of proof of the first part in a slightly more general situation.
See also 3.2.2 and 3.2.3 for the horizontal bundleNc. Here we want to sketch the use of
the second part. Suppose thatt 7→ (θ 7→ c(t, θ)) is a path in Emb(S1,R2). Thenπ ◦ c

is a smooth path inBe(S1,R2). Parallel transport over it with initial valuec(0, ·) is now
a pathf in Emb(S1,R2) which is horizontal, i.e., we have〈ft , fθ 〉 = 0. This argument
will play an important role below. In 2.5 below we will prove this property for general
immersions.

2.4. Free immersions.The manifold Imm(S1,R2) of all immersionsS1
→ R2 is an

open set in the manifoldC∞(S1,R2) and thus itself a smooth manifold. An immersion
c : S1

→ R2 is calledfree if Diff (S1) acts freely on it, i.e.,c ◦ ϕ = c for ϕ ∈ Diff (S1)

impliesϕ = Id. We have the following results:

(1) If ϕ ∈ Diff (S1) has a fixed point and ifc ◦ ϕ = c for some immersionc thenϕ = Id.
This is [2, 1.3].

(2) If for c ∈ Imm(S1,R2) there is a pointx ∈ c(S1) with only one preimage thenc is a
free immersion.This is [2, 1.4]. There exist free immersions without such points: Consider
a figure eight consisting of two touching ovals, and mapS1 to this by first transversing
the upper oval three times and then the lower oval two times. This is a free immersion.

(3) The manifold Bi,f (S1,R2) ([2, 1.5]). The setImmf (S1,R2) of all free immersions
is open inC∞(S1,R2) and thus a smooth submanifold. The projection

π : Immf (S
1,R2) →

Immf (S1,R2)

Diff (S1)
=: Bi,f (S

1,R2)

onto a Hausdorff smooth manifold is a smooth principal fibration with structure group
Diff (S1). By [6, 39.1 and 43.1]this fibration admits a smooth principal connection de-
scribed by the horizontal bundle with fiberNc consisting of all vector fieldsh alongc such
that 〈h, cθ 〉 = 0. This connection admits a smooth parallel transport over each smooth
curve in the base manifold.
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We might view Immf (S1,R2) as the nonlinear Stiefel manifold of parametrized
curves in R2 and consequentlyBi,f (S1,R2) as the nonlinear Grassmannian of un-
parametrized simple closed curves.

Sketch of proof.See also [2] for a slightly different proof with more details. Forc ∈

Immf (S1,R2) ands = (s1, s2) ∈ V(c) ⊂ C∞(S1,R × S1) consider

ϕc(s) : S1
→ R2, ϕc(s)(θ) = c(s2(θ))+ s1(s2(θ)) · nc(s2(θ)),

whereV(c) is aC∞-open neighborhood of(0, IdS1) in C∞(S1,R × S1) chosen in such
a way that:

• s2 ∈ Diff (S1) for eachs ∈ V(c).
• ϕc(s) is a free immersion for eachs ∈ V(c).
• For (s1, s2) ∈ V(c) andα ∈ Diff (S1) we have(s1, s2 ◦ α) ∈ V(c).

Obviouslyϕc(s1, s2) ◦ α = ϕc(s1, s2 ◦ α) and s2 is uniquely determined byϕc(s1, s2)
since this is a free immersion. Thus the inverse ofϕc is a smooth chart for the manifold
Immf (S1,R2). Moreover, we consider the mapping (which will be important in Section 4
below)

ψc : C∞(S1, (−ε, ε)) → Immf (S
1,R2), Q(c) := ψc(C

∞(S1, (−ε, ε))),

ψc(f )(θ) = c(θ)+ f (θ)nc(θ) = ϕc(f, IdS1)(θ),

π ◦ ψ : C∞(S1, (−ε, ε)) → Bi,f (S
1,R2),

whereε is small. Then (an open subset of)V(c) splits diffeomorphically into

C∞(S1, (−ε, ε))× Diff S1

and thus its image underϕc splits intoQ(c) × Diff (S1). So the inverse ofπ ◦ ψc is a
smooth chart forBi,f (S1,R2). That the chart changes induced by the mappingsϕc and
ψc contructed here are smooth is shown by writing them in terms of compositions and
projections only and applying the setting of [6]. ut

2.5. Non-free immersions.Any immersion is proper sinceS1 is compact and thus by
[2, 2.1] the orbit spaceBi(S1,R2) = Imm(S1,R2)/Diff (S1) is Hausdorff. Moreover, by
[2, 3.1 and 3.2] for any immersionc the isotropy group Diff(S1)c is a finite cyclic group
which acts as group of covering transformations for a finite coveringqc : S1

→ S1 such
thatc factors overqc to a free immersion̄c : S1

→ R2 with c̄◦qc = c. Thus the subgroup
Diff 1(S

1) of all diffeomorphismsϕ fixing 1 ∈ S1 acts freely on Imm(S1,R2). Moreover,
for eachc ∈ Imm the submanifoldQ(c) from the proof of 2.4.3 (dropping the freeness
assumption) is a slice in a strong sense:

• Q(c) is invariant under the isotropy group Diff(S1)c.
• If Q(c) ◦ ϕ ∩ Q(c) 6= ∅ for ϕ ∈ Diff (S1) thenϕ is already in the isotropy group

Diff (S1)c.
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• Q(c) ◦ Diff (S1) is an invariant open neighborhood of the orbitc ◦ Diff (S1) in
Imm(S1,R2) which admits a smooth retractionr onto the orbit. The fiberr−1(c ◦ ϕ)

equalsQ(c ◦ ϕ).

Note that also the action

Imm(S1,R2)× Diff (S1) → Imm(S1,R2)× Imm(S1,R2), (c, ϕ) 7→ (c, c ◦ ϕ),

is proper so that all assumptions and conclusions of Palais’ slice theorem [8] hold. These
results show that the orbit spaceBi(S1,R2) has only very simple singularities of the
type of a coneC/{e2πk/n : 0 ≤ k < n} times a Fŕechet space. We may call the
spaceBi(S1,R2) an infinite-dimensionalorbifold. The projectionπ : Imm(S1,R2) →

Bi(S
1,R2) = Imm(S1,R2)/Diff (S1) is a submersion off the singular points and has only

mild singularities at the singular strata. The normal bundleNc mentioned in 2.3 is well
defined and is a smooth vector subbundle of the tangent bundle. We do not have a prin-
cipal bundle and thus no principal connections, but we can prove the main consequence,
the existence of horizontal paths, directly:

Proposition. For any smooth pathc in Imm(S1,R2) there exists a smooth pathϕ in
Diff (S1) with ϕ(0, ) = IdS1 depending smoothly onc such that the pathe given by
e(t, θ) = c(t, ϕ(t, θ)) is horizontal:et ⊥ eθ .

Proof. Let us writee = c ◦ϕ for e(t, θ) = c(t, ϕ(t, θ)), etc. We look forϕ as the integral
curve of a time dependent vector fieldξ(t, θ) on S1, given byϕt = ξ ◦ ϕ. We want the
following expression to vanish:

〈∂t (c ◦ ϕ), ∂θ (c ◦ ϕ)〉 = 〈ct ◦ ϕ + (cθ ◦ ϕ) ϕt , (cθ ◦ ϕ) ϕθ 〉

= (〈ct , cθ 〉 ◦ ϕ) ϕθ + (〈cθ , cθ 〉 ◦ ϕ) ϕθ ϕt

= ((〈ct , cθ 〉 + 〈cθ , cθ 〉 ξ) ◦ ϕ) ϕθ .

Using the time dependent vector fieldξ = −〈ct , cθ 〉/|cθ |
2 and its flowϕ achieves this.

ut

2.6. The manifold of immersions with constant speed.Let Imma(S1,R2) be the space
of all immersionsc : S1

→ R2 which are parametrized by scaled arc length, so that|cθ |

is constant.

Proposition. The spaceImma(S
1,R2) is a smooth manifold. There is a diffeomorphism

Imm(S1,R2) = Imma(S
1,R2) × Diff +

1 (S
1) which respects the splittingDiff (S1) =

Diff +

1 (S
1) n (S1 n Z2). There is a smooth action of the rotation and reflection group

S1 n Z2 on Imma(S
1,R2) with orbit spaceImma(S

1,R2)/(S1 n Z2) = Bi(S
1,R2).

Proof. For c ∈ Imm(S1,R2) we put

σc ∈ Diff 1(S
1), σc(θ) = exp

(
2πi

∫ θ
1 |c′(u)| du∫

S1 |c′(u)| du

)
,

α : Imm(S1,R2) → Imma(S
1,R2), α(c)(θ) := c(σ−1

c (θ)).
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By the fundamentals of manifolds of mappings [6] the mappingα is smooth from
Imm(S1,R2) into itself and we haveα ◦ α = α.

Now we show that Imma(S1,R2) is a manifold. We use the notation from the proof of
2.4.3 with the freeness assumption dropped. Forc ∈ Imma(S

1,R2) we use the following
mapping as the inverse of a chart:

C∞(S1, (−ε, ε))× S1
→

⋃
θ∈S1

Q(c( + θ))
α

−→ Imma(S
1,R2),

(f, θ) 7→ ψc( +θ)(f ( + θ)) 7→ α(ψc( +θ)(f ( + θ))).

The chart changes are smooth: If for(fi, θi) ∈ C∞(S1, (−ε, ε)) × S1 we have
α(ψc1( +θ1)(f1( + θ1))) = α(ψc2( +θ2)(f2( + θ2))) then the initial points agree and
both curves are equally oriented soc1(θ + θ1)+ f1(θ + θ1)nc1(θ + θ1) = c2(ϕ(θ)+ θ2)

+ f2(ϕ(θ)+ θ2)nc2(ϕ(θ)+ θ2) for all θ . From this one can express(f2, θ2) smoothly in
terms of(f1, θ1).

For the latter assertion one has to show that a smooth path throughe1 in Q(c1) is
mapped to a smooth path in Diff1(S

1). This follows from the finite-dimensional implicit
function theorem. The mappingα is now smooth into Imma(S1,R2) and the diffeomor-
phism Imm(S1,R2) → Imma(S

1,R2) × Diff 1(S
1) is given byc 7→ (α(c), σc) with

inverse(e, ϕ) 7→ e ◦ ϕ−1. Only the groupS1 n Z2 of rotations and reflections ofS1 then
still acts on Imma(S1,R2) with orbit spaceBi(S1,R2). The rest is clear. ut

2.7. Tangent space, length, curvature, and Frenet–Serret formulas onImma(S
1,R2).

A smooth curvet 7→ c( , t) ∈ Imm(S1,R2) lies in Imma(S1,R2) if and only if |∂θc|2 =

|cθ |
2 is constant inθ , i.e.,∂θ |cθ |2 = 2〈cθ , cθθ 〉 = 0. Thush = ∂t |0c ∈ Tc Imm(S1,R2) =

C∞(S1,R2) is tangent to Imma(S1,R2) at the foot pointc if and only if 〈hθ , cθθ 〉 +

〈hθθ , cθ 〉 = 〈hθ , cθ 〉θ = 0, i.e., 〈hθ , cθ 〉 is constant inθ . For c ∈ Imma(S
1,R2) the

volume form is constant inθ since|cθ | = `(c)/2π. Thus for the curvature we have

κ : Imma(S
1,R2) → C∞(S1,R),

κ(c) =

(
2π

`(c)

)3

det(cθ , cθθ ) =

(
2π

`(c)

)3

〈icθ , cθθ 〉,

and for the derivative of the length function we get

d`(c)(h) =

∫
S1

〈hθ , cθ 〉

|cθ |
dθ =

(2π)2

`(c)
〈hθ (1), cθ (1)〉.

Sincecθθ is orthogonal tocθ we have (Frenet formulas)

cθθ =

(
2π

`(c)

)2

〈icθ , cθθ 〉icθ =
`(c)

2π
κ(c)icθ ,

cθθθ =
`(c)

2π
κ(c)θ icθ +

`(c)

2π
κ(c)icθθ =

`(c)

2π
κ(c)θ icθ −

(
`(c)

2π

)2

κ(c)2cθ .
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The derivative of the curvature thus becomes

dκ(c)(h) = −2

(
2π

`(c)

)2

〈hθ , cθ 〉κ(c)+

(
2π

`(c)

)3

〈icθ , hθθ 〉.

2.8. Horizontality on Imma(S
1,R2). Let us denote by Imma,f (S1,R2) the splitting sub-

manifold of Imm consisting of all constant speed free immersions. From 2.6 and 2.4.3 we
conclude that the projection Imma,f (S1,R2) → Bf (S

1,R2) is a principal fiber bundle
with structure groupS1 n Z2, and it is a reduction of the principal fibration Immf → Bf .
The principal connection described in 2.4.3 is not compatible with this reduction. But
we can easily find some principal connections. The one we will use is described by
the horizontal bundle with fiberNa,c consisting of all vector fieldsh alongc such that
〈hθ , cθ 〉θ = 0 (tangent to Imma) and〈h(1), cθ (1)〉 = 0 for 1 ∈ S1 (horizontality). This
connection admits a smooth parallel transport; but we can even do better, beyond the prin-
cipal bundle, in the following proposition whose proof is similar and simpler than that of
Proposition 2.5.

Proposition. For any smooth pathc in Imma(S
1,R2) there exists a smooth curveϕc

in S1 with ϕc(0) = 1 depending smoothly onc such that the pathe given bye(t, θ) =

c(t, ϕc(t)θ) is horizontal:et (1) ⊥ eθ (1). ut

2.9. The degree of immersions.Recall that the degree of an immersionc : S1
→ R2 is

the winding number with respect to 0 of the tangentc′ : S1
→ R2. Since this is invariant

under isotopies of immersions, the manifold Imm(S1,R2) decomposes into the disjoint
union of the open submanifolds Immk(S1,R2) for k ∈ Z according to the degreek. We
shall also need the space Immka(S

1,R2) of all immersions of degreek with constant speed.

2.10. Theorem.

(1) The manifoldImmk(S1,R2) of immersed curves of degreek contains the subspace
Immk

a(S
1,R2) as smooth strong deformation retract.

(2) For k 6= 0 the manifoldImmk
a(S

1,R2) of immersed constant speed curves of degree
k containsS1 as a strong smooth deformation retract.

(3) For k 6= 0 the manifoldBki (S
1,R2) := Immk(S1,R2)/Diff +(S1) is contractible.

Note that fork 6= 0, Immk is invariant under the action of the group Diff+(S1) of orienta-
tion preserving diffeomorphism only, and that any orientation reversing diffeomorphism
maps Immk to Imm−k.

The non-trivialS1 in Immk appears in two ways: (a) by rotating each curve around
c(0) so thatc′(0) rotates, and (b) also by actingS1

3 β 7→ (c(θ) 7→ c(βθ)). The two
corresponding elementsa andb in the fundamental group are then related byak = b,
which explains our failure to describe the topological type ofB0

i .

Proof of Theorem 2.10.(1) is a consequence of 2.6 since Diff+

1 (S
1) is contractible.
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The general proof is inspired by the proof of the Whitney–Graustein theorem, [9], [4],
[3]. We shall view curves here as 2π -periodic plane-valued functions. For any curvec we
consider itscenter of mass

C(c) = Center(c) :=
1

`(c)

∫ 2π

0
c(u)|c′(u)| du ∈ R2,

which is invariant under Diff(S1). We shall also useα(c) = c′(0)/|c′(0)|.

The casek 6= 0. We first embedS1 into Imm(S1,R2) in the following way. Forα ∈ S1
⊂

C = R2 andk 6= 0 we seteα(θ) = αeikθ/ik, a circle of radius 1/|k| traversedk times in
the direction indicated by the sign ofk. Note that we have Center(eα) = 0 ande′α(0) = α.

Since the isotopies to be constructed later will destroy the property of having constant
speed, we shall first construct a smooth deformation retractionA : [0,1] × Immk

→

Immk
1,0 onto the subspace Immk1,0 of unit speed degreek 6= 0 curves with center 0.

Let c : R → R2 be an arbitrary constant speed immersion of degreek, period 2π , and
length`(c). Let sc(v) =

∫ v
0 |c′(u)| du be the arc length function ofc and put

A(c, t, u) =

(
1 − t + t

2π

`(c)

)
·

(
c

(
(1 − t)u+ t · s−1

c

(
`(c)

2π
u

))
− t · C(c)

)
.

ThenAc is an isotopy betweenc andc1 := A(c,1, ) depending smoothly onc. The
immersionc1 has unit speed, length 2π , and Center(c1) = 0. Moreover, for the winding
numberw0 around 0 we have

w0(c
′

1|[0,2π ]) = deg(c1) = deg(c) = k = deg(eα(c)) = w0(e
′

α(c)|[0,2π ]).

Thus Immk contains the space Immk1,0 of unit speed immersions with center of mass 0
and degreek as smooth strong deformation retract.

For c ∈ Immk
1,0 a unit speed immersion with center 0 we now construct an isotopy

t 7→ H 1(c, t, ) betweenc and a suitable curveeα. It will destroy the unit speed property,
however. Ford arg=

−xdy+ydx
√
x2+y2

we put

ϕc(u) :=
∫
c′|[0,u]

d arg, so that c′(u) = c′(0) eiϕc(u),

α(c) :=
1

2π

∫ 2π

0
(ϕc(v)− kv) dv,

ψc(t, u) := (1 − t)ϕc(u)+ t (ku+ α(c)),

h(c, t, u) :=
∫ u

0
eiψc(t,v) dv −

u

2π

∫ 2π

0
eiψc(t,v) dv,

H 1(c, t, u) := c′(0)(h(c, t, u)− Center(h(c, t, )).

ThenH 1(c, t, u) is smooth in all variables, 2π -periodic inu, with center of mass at 0,
H 1(1, c, u) equals one theeα ’s, andH 1(0, c, u) = c(u). ButH 1(c, t, ) is no longer of
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unit speed in general. And we still have to show thatt 7→ h(c, t, ) (and henceH 1) is an
isotopy. Now

∂uh(c, t, u) = eiψc(t,u) −
1

2π

∫ 2π

0
eiψc(t,v) dv,

and ∣∣∣∣ 1

2π

∫ 2π

0
eiψc(t,v) dv

∣∣∣∣ ≤ 1. (4)

If the last inequality is strict we have∂uh(t, u) 6= 0 so thath is an isotopy. If we have
equality thenψc(t, v) is constant inv, which leads to a contradiction as follows: Ifk 6= 0
thenψc(t,2π)− ψc(t,0) = 2πk so it cannot be constant for anyt .

Let us finally check how this construction depends on the choice of the base point
c(0). We have

ϕc(β+ )(u) = ϕc(β + u)− ϕc(β),

α(c(β + )) = α(c)+ kβ − ϕc(β),

ψc(β+ )(t, u) = ψc(t, u+ β)− ϕc(β),

h(c(β + ), t, u) = e−iϕc(β)(h(c, t, β + u)− h(c, t, β)),

H 1(c(β + ), t, u) = H 1(c, t, β + u).

Let us now deformH 1 back into Immk1,0. Forc ∈ Immk
1,0 we consider

H 2(c, t, u) := A(1, H 1(c, t, ), u),

H 3(c, t, u) := H 2(c, t, u+ ϕH2(c)(t)),

where theϕf for a unit speed pathf is from Proposition 2.8, so thatH 3(c) is a horizontal
path of unit speed curves of length 2π (i.e.,∂tH 3(c, t,0) ⊥ ∂u|0H

3(c, t, u)).
The isotopyA reacts in a complicated way to rotations of the parameter, but we have

A(c(β + ),1, u) = A(c,1, 2π
`(c)
sc(β)+ u). ThusH 3(c( + β), t, u) = H 3(c, t, u+ β),

soH 3 is equivariant under the rotation groupS1
⊂ Diff (S1). Fork 6= 0 we get an equiv-

ariant smooth strong deformation retract within Immk1,0 onto the subset{eα : α ∈ S1
} ⊂

Immk
1,0 which is invariant under the rotation groupS1

⊂ Diff (S1). It factors to a smooth

contraction onBki . This proves assertions (2) and (3) fork 6= 0. ut

2.11. Bigger spaces of ‘immersed’ curves.We want to introduce a larger space con-
tainingBi(S1,R2), which is complete in a suitable metric. This will serve as an ambient
space which will contain the completion ofBi(S1,R2). Let Cont(S1,R2) be the space
of all continuousfunctionsc : S1

→ R2. Instead of a group operation and its associ-
ated orbit space, we introduce an equivalence relation on Cont(S1,R2). Define a subset
R ⊂ S1

× S1 to be amonotone correspondenceif it is the image of a map

x 7→ (h(x) mod 2π, k(x) mod 2π),
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whereh, k : R → R are non-decreasing continuous functions such that

h(x + 2π) ≡ h(x)+ 2π, k(x + 2π) ≡ k(x)+ 2π.

In words, this is an orientation preserving homeomorphism fromS1 to S1 which is al-
lowed to have intervals where one or the other variable remains constant while the other
continues to increase. (These correspondences arise naturally in computer vision in com-
paring the images seen by the right and left eyes, see [1].) Then we define the equiva-
lence relation on Cont(S1,R2) by c ∼ d if and only if there is a monotone correspon-
denceR such that for allθ, ϕ ∈ R, c(θ) = d(ϕ). It is easily seen that any non-constant
c ∈ Cont(S1,R2) is equivalent to anc1 which is not constant on any intervals inS1 and
that for suchc1’s andd1’s, the equivalence relation amounts toc1 ◦ h ≡ d1 for some
homeomorphismh of S1. Let Bcont

i (S1,R2) be the quotient space by this equivalence
relation. We call theseFréchet curves.

The quotient metric onBcont
i (S1,R2) is called theFréchetmetric, a variant of the

Hausdorffmetric mentioned in the Introduction, both beingL∞ type metrics. Namely,
define

d∞(c, d) = inf
monotone corresp.R

( sup
(θ,ϕ)∈R

|c(θ)− d(ϕ)|)

= inf
homeomorph.h:S1→S1

‖c ◦ h− d‖∞.

It is straightforward to check that this makesBcont
i (S1,R2) into a complete metric space.

Another very natural space is the subsetB
lip
i (S

1,R2) ⊂ Bcont
i (S1,R2) given by the

non-constantLipschitzmapsc : S1
→ R2. The great virtue of Lipschitz maps is that their

images are rectifiable curves and thus each of them is equivalent to a mapd in which θ
is proportional to arc length, as in the previous section. More precisely, ifc is Lipschitz,
thencθ exists almost everywhere and is bounded and we can reparametrize by

h(θ) =

∫ θ

0
|cθ | dθ

/∫ 2π

0
|cθ | dθ,

obtaining an equivalentd for which |dθ | ≡ L/2π . Thisd will be unique up to rotations,
i.e. the action ofS1 in the previous section.

This subspace of rectifiable Fréchet curves is the subject of a nice compactness the-
orem due to Hilbert, namely that the set of all such curves in a closed bounded subset
of R2 and whose length is bounded is compact in the Fréchet metric. This can be seen
as follows: we can lift all such curves to specific Lipschitz mapsc whose Lipschitz con-
stants are bounded. This set is an equicontinuous set of functions by the bound on the
Lipschitz constant. By the Ascoli–Arzelà theorem the topology of pointwise convergence
equals then the topology of uniform convergence onS1. So this set is a closed subset in a
product ofS1 copies of a large ball inR2; this product is compact. The Fréchet metric is
coarser than the uniform metric, so our set is also compact.
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3. Metrics on spaces of curves

3.1. Need for invariance under reparametrization. The pointwise metric on the space
of immersions Imm(S1,R2) is given by

Gc(h, k) :=
∫
S1

〈h(θ), k(θ)〉 dθ.

This Riemannian metric is not invariant under reparametrizations of the variableθ and
thus does not induce a sensible metric on the quotient spaceBi(S

1,R2). Indeed, it induces
the zero metric sincefor any two curvesC0, C1 ∈ Bi(S

1,R2) the infimum of the arc
lengths of curves inImm(S1,R2) which connect embeddingsc0, c1 ∈ Imm(S1,R2) with
π(ci) = Ci turns out to be zero.To see this, take anyc0 in the Diff(S1)-orbit overC0.
Take the following variationc(θ, t) of c0: for θ outside a small neighborhoodU of length
ε of 1 in S1, c(θ, t) = c0(θ). If θ ∈ U , then the variation fort ∈ [0,1/2] moves the small
part ofc0 so thatc(θ,1/2) for θ in U takes offC0, goes toC1, traverses nearly all ofC1,
and returns toC0. Now in the orbit throughc(·,1/2), reparametrize in such a way that the
new curve is diligently traversingC1 for θ /∈ U , and forθ ∈ U it travels back toC0, runs
alongC0, and comes back toC1. This reparametrized curve is then varied fort ∈ [1/2,1]
in such a way that the part forθ ∈ U is moved towardsC2. It is clear that the length of
both variations is bounded by a constant (depending on the distance betweenC0 andC1
and the lengths of bothC0 andC1) timesε.

3.2. The simplest Riemannian metric onBi . Let h, k ∈ C∞(S1,R2) be two tan-
gent vectors with foot pointc ∈ Imm(S1,R2). The induced volume form is vol(c) =

〈∂θc, ∂θc〉
1/2 dθ = |cθ | dθ . We consider first the simpleH 0 weak Riemannian metric on

Imm(S1,R2):

Gc(h, k) :=
∫
S1

〈h(θ), k(θ)〉|c′(θ)| dθ, (1)

which is invariant under Diff(S1). This makes the mapπ : Imm(S1,R2) → Bi(S
1,R2)

into aRiemannian submersion(off the singularities ofBi(S1,R2)), which is very conve-
nient. We call this theH 0-metric.

Now we can determine the bundleN → Imm(S1,R2) of tangent vectors which are
normal to the Diff(S1)-orbits. The tangent vectors to the orbits areTc(c ◦ Diff (S1)) =

{g · cθ : g ∈ C∞(S1,R)}. Inserting this fork into the expression (1) of the metric we see
that

Nc = {h ∈ C∞(S1,R2) : 〈h, cθ 〉 = 0}

= {aicθ ∈ C∞(S1,R2) : a ∈ C∞(S1,R)}

= {bnc ∈ C∞(S1,R2) : b ∈ C∞(S1,R)}, (2)

wherenc is the normal unit field alongc.
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A tangent vectorh ∈ Tc Imm(S1,R2) = C∞(S1,R2) has an orthonormal decompo-
sition

h = h>
+ h⊥

∈ Tc(c ◦ Diff +(S1))⊕Nc where

h>
=

〈h, cθ 〉

|cθ |2
cθ ∈ Tc(c ◦ Diff +(S1)), (3)

h⊥
=

〈h, icθ 〉

|cθ |2
icθ ∈ Nc,

into smooth tangential and normal components.
Since the Riemannian metricG on Imm(S1,R2) is invariant under the action of

Diff (S1) it induces a metric on the quotientBi(S1,R2) as follows. For anyC0, C1 ∈ Bi ,
consider all liftingsc0, c1 ∈ Imm such thatπ(c0) = C0, π(c1) = C1 and all smooth
curvest 7→ (θ 7→ c(t, θ)) in Imm(S1,R2) with c(0, ·) = c0 andc(1, ·) = c1. Since
the metricG is invariant under the action of Diff(S1) the arc length of the curvet 7→

π(c(t, ·)) in Bi(S1,R2) is given by

Lhor
G (c) := LG(π(c(t, ·))) =

∫ 1

0

√
Gπ(c)(Tcπ · ct , Tcπ · ct ) dt =

∫ 1

0

√
Gc(c

⊥
t , c

⊥
t ) dt

=

∫ 1

0

(∫
S1

〈
〈ct , icθ 〉

|cθ |2
icθ ,

〈ct , icθ 〉

|cθ |2
icθ

〉
|cθ | dθ

)1/2

dt

=

∫ 1

0

(∫
S1

〈ct , nc〉
2
|cθ | dθ

)1/2

dt =

∫ 1

0

(∫
S1

〈ct , icθ 〉
2 dθ

|cθ |

)1/2

dt. (4)

The metric onBi(S1,R2) is defined by taking the infimum of this over all pathsc (and
all lifts c0, c1):

distBiG (C1, C2) = inf
c
Lhor
G (c).

Unfortunately, we will see below that this metric is too weak: the distance that it
defines turns out to be identically zero! For this reason, we will mostly study in this paper
a family of stronger metrics. These are obtained by the most minimal change inG. We
want to preserve two simple properties of the metric: that it is local and that it has no
derivatives in it. The standard way to strengthen the metric is go from anH 0-metric to an
H 1-metric. But when we work out the naturalH 1-metric, picking out those terms which
are local and do not involve derivatives leads us to our chosen metric.

We consider next theH 1 weak Riemannian metric on Imm(S1,R2):

G1
c(h, k) :=

∫
S1

(
〈h(θ), k(θ)〉 + A

〈hθ , kθ 〉

|cθ |2

)
|cθ | dθ, (5)

which is invariant under Diff(S1). Thusπ : Imm(S1,R2) → Bi(S
1,R2) is again aRie-

mannian submersionoff the singularities ofBi(S1,R2). We call this theH 1-metriconBi .
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To understand this metric better, we assumeh = k = aicθ/|cθ |+bcθ/|cθ |. Moreover,
for any functionf (θ), we writefs = fθ/|cθ | for the derivative with respect to arc length.
Then

hs =
hθ

|cθ |
= (aics + bcs)s = (as + κb)ics + (bs − κa)cs .

Therefore

G1
c(h, h) =

∫
S1
(a2

+ b2
+ A(as + κb)2 + A(bs − κa)2) ds

=

∫
S1
(a2(1 + Aκ2)+ Aa2

s )+ 2Aκ(asb − bsa)+ (b2(1 + Aκ2)+ Ab2
s ) ds.

LettingT1 andT2 be the differential operatorsT1 = I+Aκ2
−A( d

ds
)2, T2 = A(κs+2κ d

ds
),

then integrating by parts onS1, we get

G1
c(h, h) =

∫
S1
(T1(a) · a + 2T2(a) · b + T1(b) · b) ds.

Note thatT1 is a positive definite self-adjoint operator on functions onc, hence it has
an inverse given by a Green’s function which we writeT −1

1 . Completing the square and
using the fact thatT1 is self-adjoint, we simplify the metric to

G1
c(h, h) =

∫
c

(T1(a)·a−T
−1
1 (T2(a))·T2(a)+T1(b+T

−1
1 (T2(a)))·(b+T

−1
1 (T2(a)))) ds.

If we fix a and minimize this inb, we get the bundleN 1
→ Imm(S1,R2) of tangent

vectors which areG1-normal to the Diff(S1)-orbits. In other words

N 1
c = {h ∈ C∞(S1,R2) : h = aics + bcs, b = −T −1

1 (T2(a))}

and on horizontal vectors of this type

G1
c(h, h) =

∫
c

((1 + Aκ2)a2
+ Aa2

s ) ds −

∫
c

T −1
1 (T2(a)) · T2(a) ds.

If we drop terms involvingas , say because we assume|as | is small, then what remains is
just the integral of(1 + Aκ2)a2 plus the integral ofT −1

1 (κsa)κsa. The second is a non-
local regular integral operator, so dropping this we are left with the main metric of this
paper:

GAc (h, h) =

∫
c

(1 + Aκ2)a2 ds, h = aics,

which we call theH 0
κ -metric with curvature weightA. For further reference, on

Imm(S1,R2), for a constantA ≥ 0, it is given by

GAc (h, k) :=
∫
S1
(1 + Aκc(θ)

2)〈h(θ), k(θ)〉|c′(θ)| dθ, (6)
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which is again invariant under Diff(S1). Thusπ : Imm(S1,R2) → Bi(S
1,R2) is again

a Riemannian submersionoff the singularities. Note that for the metric (6), the bundle
N ⊂ T Imm(S1,R2) is the same as forA = 0, as described in (2). The arc length of a
curvet 7→ π(c(t, ·)) in Bi(S1,R2) is given by the analog of (4),

Lhor
GA
(c) := LGA(π(c(t, ·))) =

∫ 1

0

√
GAπ(c)(Tcπ · ct , Tcπ · ct ) dt =

∫ 1

0

√
GAc (c

⊥
t , c

⊥
t ) dt

=

∫ 1

0

(∫
S1
(1 + Aκ2

c )〈ct , nc〉
2
|cθ | dθ

)1/2

dt

=

∫ 1

0

(∫
S1
(1 + Aκ2

c )〈ct , icθ 〉
2 dθ

|cθ |

)1/2

dt. (7)

The metric onBi(S1,R2) is defined by taking the infimum of this over all pathsc (and
all lifts c0, c1):

distBi
GA
(C1, C2) = inf

c
Lhor
GA
(c).

Note that if a pathπ(c) in Bi(S1,R2) is given, then one can choose its lift to a pathc
in Imm(S1,R2) to have various good properties. Firstly, we can choose the liftc(0, )
of the inital curve to have a parametrization of constant speed, i.e. if its length is`, then
|cθ |(θ,0) = `/2π for all θ ∈ S1. Secondly, we can make the tangent vector toc every-
where horizontal, i.e.〈ct , cθ 〉 ≡ 0, by 2.5. Thirdly, we can reparametrize the coordinatet

on the path of lengthL so that the path is traversed at constant speed, i.e.∫
S1
(1 + Aκ2

c )〈ct , icθ 〉
2 dθ/|cθ | ≡ L2 for all 0 ≤ t ≤ 1.

3.3. A Lipschitz bound for arc length inGA. We apply the Cauchy–Schwarz inequality
to the derivative 2.2.4 of the length function along a patht 7→ c(t, ):

∂t`(c) = d`(c)(ct ) = −

∫
S1
κ(c)〈ct , nc〉|cθ | dθ ≤

∣∣∣∣∫
S1
κ(c)〈ct , nc〉|cθ | dθ

∣∣∣∣
≤

(∫
S1

12
|cθ | dθ

)1/2(∫
S1
κ(c)2〈ct , nc〉

2
|cθ | dθ

)1/2

≤ `(c)1/2
1

√
A

(∫
S1
(1 + Aκ(c)2)〈ct , nc〉

2
|cθ | dθ

)1/2

.

Thus

∂t (
√
`(c)) =

∂t`(c)

2
√
`(c)

≤
1

2
√
A

(∫
S1
(1 + Aκ(c)2)〈ct , nc〉

2
|cθ | dθ

)1/2

and by using 3.2.7 we get
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√
`(c1)−

√
`(c0) =

∫ 1

0
∂t (

√
`(c)) dt

≤
1

2
√
A

∫ 1

0

(∫
S1
(1 + Aκ(c)2)〈ct , nc〉

2
|cθ | dθ

)1/2

dt

=
1

2
√
A
Lhor
GA
(c). (1)

If we take the infimum over all paths connectingc0 with the Diff(S1)-orbit throughc1 we
get:

Lipschitz continuity of
√
` : Bi(S1,R2) → R≥0. For C0 andC1 in Bi(S1,R2) =

Imm(S1,R2)/Diff (S1) we have, forA > 0,√
`(C1)−

√
`(C0) ≤

1

2
√
A

distBi
GA
(C1, C2). (2)

3.4. Bounding the area swept by a path inBi . Secondly, we want to bound the area
swept out by a path starting fromC0 to reach any curveC1 nearby in our metric. First we
use the Cauchy–Schwarz inequality in the Hilbert spaceL2(S1, |cθ (t, θ)| dθ) to get∫

S1
1 · |ct (t, θ)| |cθ (t, θ)| dθ = 〈1, |ct |〉L2

≤ ‖1‖L2‖ct‖L2 =

(∫
S1

|cθ (t, θ)| dθ

)1/2(∫
S1

|ct (t, θ)|
2
|cθ (t, θ)| dθ

)1/2

.

Now we assume that the variationc(t, θ) is horizontal, so that〈ct , cθ 〉 = 0. ThenLGA(c)
= Lhor

GA
(c). We use this inequality and then the intermediate value theorem of integral

calculus to obtain

Lhor
GA
(c) = LGA(c) =

∫ 1

0

√
GAc (ct , ct ) dt

=

∫ 1

0

(∫
S1
(1 + Aκ(c)2)|ct (t, θ)|

2
|cθ (t, θ)| dθ

)1/2

dt

≥

∫ 1

0

(∫
S1

|ct (t, θ)|
2
|cθ (t, θ)| dθ

)1/2

dt

≥

∫ 1

0

(∫
S1

|cθ (t, θ)| dθ

)−1/2 ∫
S1

|ct (t, θ)| |cθ (t, θ)| dθ dt

=

(∫
S1

|cθ (t0, θ)| dθ

)−1/2 ∫ 1

0

∫
S1

|ct (t, θ)| |cθ (t, θ)| dθ dt

for some intermediate value 0≤ t0 ≤ 1,

=
1

√
`(c(t0, ·))

∫
[0,1]×S1

|detdc(t, θ)| dθ dt.
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Area swept out bound. If c is any path fromC0 toC1, then(
area of the region swept
out by the variationc

)
≤ max

t

√
`(c(t, ·)) · Lhor

GA
(c). (1)

This result enables us to compare the double coverBor
i (S

1,R2) of our metric space
Bi(S,R2) consisting of oriented unparametrized curves to the fundamental space of geo-
metric measure theory. Note that there is a maph1 fromBor

i to the space of 1-currentsD′

1
given by

〈h1(c mod Diff+(S1)), ω〉 =

∫
S1
c∗ω, c ∈ Imm(S1,R2).

The imageh1(C) is, in fact, closed. For anyC, define the integer-valued measurable
functionwC onR2 by

wC((x, y)) = winding number ofC around(x, y).

Then it is easy to see that, as currents,h1(C) = ∂(wCdxdy), hence∂h1(C) = 0.

Fig. 1. Two distinct immersions ofS1 in the plane whose underlying currents are equal. One curve
is solid, the other dashed.

Althoughh1 is obviously injective on the spaceBe, it is not injective onBi as illus-
trated in Figure 1. The image of this mapping lies in the basic subsetI1,c ⊂ D′

1 of closed
integralcurrents, namely those which are both closed and countable sums of currents de-
fined by Lipschitz mappingsci : [0,1] → R2 of finite total length. Integral currents carry
what is called theflat metric, which, for closed 1-currents, reduces (by the isoperimetric
inequality) to the area distance

d[(C1, C2) =

∫∫
R2

|wC1 − wC2| dx dy. (2)

To connect this with our ‘area swept out bound’, note that if we have any pathc in
Imm(S1,R2) joining C1 andC2, this path defines a 2-currentw(c) such that∂w(c) =

h1(C1)− h1(C2) and ∫
R2

|w(c)| dx dy ≤

∫ 1

0

∫
S1

|detc| dθ dt,
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which is what we are calling the area swept out. But∂(wC1 − wC2) = h1(C1) − h1(C2)

too, sow(c) = wC1 − wC2. Thus

d[(C1, C2) ≤ min
all pathsc joiningC1,C2

[area swept out byc]. (3)

Finally, we recall the fundamental compactness result of geometric measure theory in
this simple case: the space of integral 1-currents of bounded length is compact in the flat
metric. This implies that our ‘area swept out bound’ above has the property:

Corollary.

• If {Cn} is any Cauchy sequence inBi for the metricdistGA , then{h1(Cn)} is a Cauchy
sequence inI1,c on which length is bounded.

• Henceh1 extends to a continuous map from the completionBi of Bi in the metricGA

to I1,c.

3.5. Bounding how far curves move in small paths inBi . We want to bound the maxi-
mum distance a curveC0 can move on any path whose length is small inGA metric. Fix
the initial curveC0 and let` be its length. The result is:

Maximum distance bound. Let ε < min{2
√
A`, `3/2

}/8 and letη = 4(`3/4A−1/4
+

`1/4)
√
ε. Then for any pathc starting atC0 whose length isε, the final curve lies in the

tubular neighborhood ofC0 of widthη. More precisely, if we choose the pathc(t, θ) to
be horizontal, thenmaxθ |c(0, θ)− c(1, θ)| < η.

Proof. For all of this proof, we assume the path inBi has been lifted to a horizon-
tal pathc ∈ Imm(S1,R2) with |cθ |(0, θ) ≡ `/2π , so that〈ct , cθ 〉 ≡ 0, and also that∫
S1(1+Aκ2

c )|ct |
2
|cθ | dθ ≡ ε2. The first step in the proof is to refine the Lipschitz bound

on the length of a curve to a local estimate. Note that by horizontality

∂

∂t

√
|cθ | =

〈cθt , cθ 〉

2|cθ |3/2
= −

〈ct , cθθ 〉

2|cθ |3/2
= −

〈ct , icθ 〉

2|cθ |
κc |cθ |

1/2
= ∓

1
2κc |ct | |cθ |

1/2,

hence ∫
S1

(
∂

∂t

√
|cθ |

)2

ds ≤
ε2

4A
.

Now we make the key definition:

|̃cθ |(t, θ) = min
0≤t1≤t

|cθ |(t1, θ).

Note that thet-derivative of|̃cθ | is either 0 or equal to that of|cθ | and is≤ 0. Thus∫
S1

(√
`

2π
−

√
|̃cθ |(1, θ)

)
dθ ≤

∫ 1

0

∫
S1

−
∂

∂t

√
|̃cθ | dθ dt ≤

∫ 1

0

∫
S1

∣∣∣∣ ∂∂t√|cθ |

∣∣∣∣ dθ dt
≤

∫ 1

0

(∫
S1
dθ

)1/2(∫
S1

∣∣∣∣ ∂∂t√|cθ |

∣∣∣∣2 dθ)1/2

dt

≤
√

2π
ε

2
√
A
.
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To make use of this inequality, letE = {θ : |̃cθ |(1, θ) ≤ (1 − (A`)−1/4√ε)`/2π}. Our
assumption onε gives(A`)−1/4√ε < 1/2, hence onS1

\ E we havẽ|cθ | > `/4π . OnE
we have also(|̃cθ |)1/2 ≤ (1 − (A`)−1/4√ε/2)

√
`/2π . Combining this with the previous

inequality, we get (whereµ(E) is the measure ofE)

µ(E)
1

2
√

2π

(
`

A

)1/4
√
ε ≤

√
2π

ε

2
√
A
, hence µ(E) ≤ 2π

√
ε

(A`)1/4
< π.

We now use the lower bound on|cθ | onS1
− E to controlc(1, θ)− c(0, θ):∫

S1−E

|c(1, θ)− c(0, θ)| dθ ≤

∫ 1

0

∫
S1−E

|ct | dθ dt

≤
√

2π
∫ 1

0

(∫
S1−E

|ct |
2 dθ

)1/2

dt

≤

√
2π

√
`/4π

∫ 1

0

(∫
S1−E

|ct |
2
|cθ | dθ

)1/2

dt ≤
2
√

2π
√
`
ε.

Again, introduce a small exceptional setF = {θ : θ /∈ E and|c(1, θ) − c(0, θ)| ≥

`1/4√ε}. By the inequality above, we get

µ(F) · `1/4√ε ≤
2
√

2πε
√
`

, hence µ(F) ≤
2
√

2π
√
ε

`3/4
< π.

The last inequality follows from the second assumption onε. Knowingµ(E) andµ(F)
gives us the lengths|c(0, E)| and|c(0, F )| in R2. But we need the lengths|c(1, E)| and
|c(1, F )| too. We get these using the fact that the whole length ofC1 cannot be too large,
by 3.3:

√
|C1| ≤

√
`+

ε

2
√
A
, hence |C1| ≤ `+ 2ε

√
`

A
≤ `+

√
ε ·

`3/4

A1/4
.

OnS1
\ E we havẽ|cθ | > (1 − (A`)−1/4√ε)`/2π , thus we get

|c(1, E ∪ F)| = |C1| − |c(1, S1
\ (E ∪ F))|

≤ `+
√
ε
`3/4

A1/4
−

(
1 −

√
ε

(A`)1/4

)
`

2π
(2π − µ(E ∪ F))

≤
√
ε

(
3
`3/4

A1/4
+

√
2`1/4

)
.

Finally, we can get fromc(0, θ) to c(1, θ) by going viac(0, θ ′) andc(1, θ ′) whereθ ′
∈

S1
\ (E ∪ F) 6= ∅. Thus

max
θ

|c(0, θ)− c(1, θ)| ≤ |c(0, E ∪ F)| + `1/4√ε + |c(1, E ∪ F)|

≤ 4(`3/4A−1/4
+ `1/4)

√
ε. ut
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Combining this with the Lipschitz continuity of the square root of arc length, we get:

3.6. Corollary. For anyA > 0, the map fromBi(S1,R2) thedistGA metric to the space
Bcont
i (S1,R2) in the Fŕechet metric is continuous, and, in fact, uniformly continuous on

every subset where the length` is bounded. In particular,distGA is a separating metric
onBi(S1,R2). Moreover, the completionBi(S1,R2) of Bi(S1,R2) in this metric can be
identified with a subset ofB lip

i (S
1,R2).

If we iterate this bound, then we get the following:

3.7. Corollary. Consider all paths inBi joining curvesC0 andC1. LetL be the length
of such a path in thedistGA metric and let̀ min, `max be the minimum and maximum of
the arc lengths of the curves in this path. Then there are parametrizationsc0, c1 of C0
andC1 such that

max
θ

|c0(θ)− c1(θ)| ≤ 50 max(LF ∗,
√
`maxLF ∗), where

F ∗
= max

(
1

√
`min

,

√
`max

A

)
.

To prove this, you need only break up the path into a minimum number of pieces for
which the maximum distance bound 3.5 holds and add together the estimates for each
piece. We will only sketch this proof which is straightforward. The constant 50 is just
what comes out without attempting to optimize the bound. The second option for bound,
50

√
`maxLF ∗ is just a rephrasing of the bound already in the theorem for short paths.

If the path is too long to satisfy the condition of the theorem, we break the path at
intermediate curvesCi of length`i such that each begins a subpath with lengthεi =

min(
√
A`i, `

3/2
i )/8 and which do not overlap for more than 2:1. Thus

∑
i εi ≤ 2L. Then

apply the maximum distance bound 3.5 to each piece, lettingηi be the bound on how far
points move in this subpathor any parts thereofand satisfy

ηi ≤ 2
√

2`i ≤ 16
√

2εiF
∗,

from which we get what we need by summing overi.

3.8. A final corollary shows that if we parametrize any path appropriately, we get explicit
equicontinuous continuity bounds on the parametrization depending only onL, `max and
`min. This is a step towards establishing the existence of weak geodesics. The idea is
this: instead of the horizontal parametrization〈ct , cθ 〉 ≡ 0, we parametrize each curve at
constant speed|cθ | ≡ `(t)/2π where`(t) is the length of thet th curve and ask only that
〈ct , cθ 〉(0, t) ≡ 0 for some base point 0∈ [0,2π ] (see 2.8). Then we get:

Corollary. If a pathc(t, θ),0 ≤ t ≤ 1 satisfies

|cθ (t, θ)| ≡ `(t)/2π and 〈ct , cθ 〉(t,0) ≡ 0 for all θ, t,∫
Ct

(1 + Aκ2
Ct
)|〈ct , icθ 〉|

2 dθ/|cθ | ≡ L2 for all t,
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then

|c(t1, θ1)− c(t2, θ2)| ≤
`max

2π
|θ1 − θ2| + 7(`3/4

max/A
1/4

+ `
1/4
max)

√
L(t1 − t2)

whenever|t1 − t2| ≤ min(2
√
A`min, `

3/2
min)/(8L).

Proof. We need to compare the constant speed parametrization here with the horizontal
parametrization—call itc∗—used in the maximum distance bound 3.5. Under the hor-
izontal parametrization, let the point(t1, θ1) on Ct1 correspond to(t2, θ∗

1 ) on Ct2, i.e.

c(t2, θ
∗

1 ) = c∗(t2, θ1). LetC = (`
3/4
max/A

1/4
+ `

1/4
max). Then we know from 3.5 that

|c(t1, θ1)− c(t2, θ
∗

1 )| ≤ 4C
√
L(t1 − t2).

To compareθ1 andθ∗

1 , we use the properties of the setE in the proof of 3.5 to estimate

(θ∗

1 − θ1)`2

2π
=

∫ θ1

0
|c∗θ (t2, ϕ)| dϕ −

θ1`2

2π

≥

(
1 −

√
L(t1 − t2)

(A`1)1/4

)
(θ1 − µ(E))

`1

2π
−
θ1`2

2π

≥ −2`1

√
L(t1 − t2)

(A`1)1/4
− |`1 − `2|

and similarly

((2π − θ∗

1 )− (2π − θ1))`2

2π
=

∫ 2π

θ1

|c∗θ (t2, ϕ)| dϕ −
(2π − θ1)`2

2π

≥ −2`1

√
L(t1 − t2)

(A`1)1/4
− |`1 − `2|.

Combining these and using the Lipschitz property of length, we get

|θ∗

1 − θ1|`2

2π
≤ 2C

√
L(t1 − t2)+ 2|

√
`1 −

√
`2|

√
`max

≤ 2C
√
L(t1 − t2)+

√
`max

L(t1 − t2)
√
A

≤
5

2
C

√
L(t1 − t2).

Thus, finally

|c(t1, θ1)− c(t2, θ2)| ≤ |c(t1, θ1)− c(t2, θ
∗

1 )|

+ |c(t2, θ
∗

1 )− c(t2, θ1)| + |c(t2, θ1)− c(t2, θ2)|

≤ 4C
√
L(t1 − t2)+

5

2
C

√
L(t1 − t2)+

`max

2π
|θ1 − θ2|. ut
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3.9. One might also ask whether the maximum distance bound 3.5 can be strengthened
to assert that the 1-jets of such curvesC must be close to the 1-jets ofC0. The answer is
NO, as is easily seen from looking at small wavelet-type perturbations ofC0. Specifically,
calculate the length of the pathc(t, θ) = c0(θ)+ t ·af (θ/a) · i(c0)θ (θ), 0 ≤ t ≤ 1, where
f is anarbitrary C2 function with compact support anda is very small. We claim the
length of this path isO(

√
a), while the 1-jet at the pointθ = 0 of the final curve of the

path approaches(1 + if ′0)(c0)θ (0).
We sketch the proof, which is straightforward. LetCa,t be the curves on this path.

Then sup|ct | = O(a), sup|κCa,t | = O(1/a), A ≤ |cθ | ≤ B for suitableA,B > 0 and
`(supp(ct )) = O(a). Then the integral

∫
S1(1 + Aκ2

c )(ct , icθ )
2 dθ

|cθ |
breaks up into two

pieces, the first beingO(a2), the second beingO(1) and the integral vanishing outside an
interval of lengthO(a). Thus the total distance isO(

√
a).

3.10. TheH 0-distance onBi(S1,R2) vanishes. Let c0, c1 ∈ Imm(S1,R2) be two im-
mersions, and suppose thatt 7→ (θ 7→ c(t, θ)) is a smooth curve in Imm(S1,R2) with
c(0, ·) = c0 andc(1, ·) = c1.

The arc length for theH 0-metric of the curvet 7→ π(c(t, ·)) in Bi(S1,R2) is given
by 3.2.7 as

Lhor
G0 (c) =

∫ 1

0

(∫
S1

〈ct , icθ 〉
2 dθ

|cθ |

)1/2

dt. (1)

Theorem. For c0, c1 ∈ Imm(S1,R2) there always exists a patht 7→ c(t, ·) with
c(0, ·) = c0 andπ(c(1, ·)) = π(c1) such thatLhor

G0 (c) is arbitrarily small.

Heuristically, the reason for this is that if the curve is made to zig-zag wildly, say with
teeth at an angleα, then the length of the curve goes up by a factor 1/cos(α) but the
normalcomponent of the motion of the curve goes down by the factor cos(α)—and this
normal component is squared, hence it dominates.

Proof. Take a pathc(t, θ) in Imm(S1,R2) from c0 to c1 and make it horizontal using 2.5
so that〈ct , cθ 〉 = 0; this forces a reparametrization onc1.

Now let us viewc as a smooth mappingc : [0,1] × [0,1] → R2. We shall use
the piecewise linear reparametrization(ϕ(t, θ), θ) of the square shown above, which for
0 ≤ t ≤ 1/2 deforms the straight line into a zig-zag of height 1 and periodn/2 connecting
the two end-curves, and then removes the teeth for 1/2 ≤ t ≤ 1. In detail: Letc̃(t, θ) =

c(ϕ(t, θ), θ) where

ϕ(t, θ) =



2t (2nθ − 2k) for 0 ≤ t ≤ 1/2, 2k
2n ≤ θ ≤

2k+1
2n ,

2t (2k + 2 − 2nθ) for 0 ≤ t ≤ 1/2, 2k+1
2n ≤ θ ≤

2k+2
2n ,

2t − 1 + 2(1 − t)(2nθ − 2k) for 1/2 ≤ t ≤ 1, 2k
2n ≤ θ ≤

2k+1
2n ,

2t − 1 + 2(1 − t)(2k + 2 − 2nθ) for 1/2 ≤ t ≤ 1, 2k+1
2n ≤ θ ≤

2k+2
2n .
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Fig. 2. The reparametrization of a path of curves used to make its length arbitrarily small.

Then we get̃cθ = ϕθ · ct + cθ andc̃t = ϕt · ct where

ϕθ =


+4nt,

−4nt,

+4n(1 − t),

−4n(1 − t),

ϕt =


4nθ − 4k,

4k + 4 − 4nθ,

2 − 4nθ + 4k,

−(2 − 4nθ + 4k).

Also, 〈ct , cθ 〉 = 0 implies〈c̃t , ic̃θ 〉 = ϕt · |ct | · |cθ | and|c̃θ | = |cθ |

√
1 + ϕ2

θ (|ct |/|cθ |)
2.

Thus

Lhor(c̃) =

∫ 1

0

(∫ 1

0
〈c̃t , ic̃θ 〉

2 dθ

|c̃θ |

)1/2

dt =

∫ 1

0

(∫ 1

0

ϕ2
t |ct |

2
|cθ |√

1 + ϕ2
θ (

|ct |
|cθ |
)2
dθ

)1/2

dt

=

∫ 1/2

0

(n−1∑
k=0

(∫ 2k+1
2n

2k
2n

(4nθ − 4k)2|ct (ϕ, θ)|2|cθ (ϕ, θ)|√
1 + (4nt)2( |ct (ϕ,θ)|

|cθ (ϕ,θ)|
)2

dθ

+

∫ 2k+2
2n

2k+1
2n

(4k + 4 − 4nθ)2|ct (ϕ, θ)|2|cθ (ϕ, θ)|√
1 + (4nt)2( |ct (ϕ,θ)|

|cθ (ϕ,θ)|
)2

dθ

))1/2

dt

+

∫ 1

1/2

(n−1∑
k=0

(∫ 2k+1
2n

2k
2n

(2 − 4nθ + 4k)2|ct (ϕ, θ)|2|cθ (ϕ, θ)|√
1 + (4n)2(1 − t)2(

|ct (ϕ,θ)|
|cθ (ϕ,θ)|

)2
dθ

+

∫ 2k+2
2n

2k+1
2n

(2 − 4nθ + 4k)2|ct (ϕ, θ)|2|cθ (ϕ, θ)|√
1 + (4n)2(1 − t)2(

|ct (ϕ,θ)|
|cθ (ϕ,θ)|

)2
dθ

))1/2

dt.
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The function|cθ (ϕ, θ)| is uniformly bounded above and away from 0, and|ct (ϕ, θ)| is
uniformly bounded. Thus we may estimate

n−1∑
k=0

∫ 2k+1
2n

2k
2n

(4nθ − 4k)2|ct (ϕ, θ)|2|cθ (ϕ, θ)|√
1 + (4nt)2( |ct (ϕ,θ)|

|cθ (ϕ,θ)|
)2

dθ

≤ O(1)
n−1∑
k=0

∫ 1
2n

0

4n2θ2
|ct (ϕ(t,

2k
2n + θ), 2k

2n + θ)|2√
1 + (4nt)2|ct (ϕ(t, 2k

2n + θ), 2k
2n + θ)|2

dθ.

We estimate as follows. Fixε > 0. First we split off the integral
∫ ε

0 which isO(ε)
uniformly in n; so for the rest we havet ≥ ε. The last sum of integrals is now estimated
as follows: Consider first the set of allθ such that|ct (ϕ(t, 2k

2n + θ), 2k
2n + θ)| < ε which is

a countable disjoint union of open intervals. There we get the estimate

O(1) · n · 4n2
· ε2(θ3/3)|θ=1/2n

θ=0 = O(ε),

uniformly in n. On the complementary set of allθ where|ct (ϕ(t,
2k
2n + θ), 2k

2n + θ)| ≥ ε

we use alsot ≥ ε and estimate by

O(1) · n · 4n2
·

1
4nε2 · (θ3/3)|θ=1/2n

θ=0 = O

(
1

ε2n

)
.

The other sums of integrals can be estimated similarly, thusLhor(c̃) goes to 0 asn → ∞.
It is clear that one can approximateϕ by a smooth function without changing the estimates
essentially. ut

3.11. Non-smooth curves in the completion ofBi . We have seen in 3.6 that the com-
pletion ofBi in the metricGA lies in the space of Lipschitz mapsc : S1

→ R2 mod
monotone correspondences, that is, rectifiable Fréchet immersed curves. But how big is
it really? We cannot answer this, but we show, in this section, that certain non-smooth
curves are in the completion. To be precise, ifc is rectifiable, then we can assumec is
parametrized at constant speed|cθ | ≡ L/2π whereL is the length of the curve. There-
fore cθ = (L/2π)eiα(θ) for some measurable functionα(θ) giving the orientation of the
tangent line at almost every point. We will say that a rectifiable curvec is 1-BV if the
functionα is of bounded variation. Note that this means that the derivative ofα exists
as a finite signed measure, hence the curvature ofc—which is (2π/L)α′—is also a fi-
nite signed measure. In particular, there are a countable set of ‘vertices’ on such a curve,
points whereα has a discontinuity and the measure giving its curvature has an atomic
component. Note thatα has left and right limits everywhere and vertices can be assigned
angles, namelyα+(θ)− α−(θ).

Theorem. All 1-BV rectifiable curves are in the completion ofBi with respect to the
metricGA.

Proof. This is proven using the following lemma:



Riemannian geometries on spaces of plane curves 27

Lemma. Letc(t, θ), 0< t ≤ 1, be an open path of smooth curvesc(t) and letα(t, θ) =

arg(cθ (t, θ)). Assume that

(1) the length of all curvesc(t) is bounded byC1,
(2) |ct | ≤ C2, for all (t, θ),
(3) for all t , the total variation inθ of α(t, θ) is bounded byC3,
(4) the curvature ofc(t) satisfies|κc(t)(t, θ)| ≤ C4/t for all θ .

Then the length of this path is bounded byC2(
√
C1 + 2

√
AC3C4).

To prove the lemma, letst be arc length onc(t) and estimate the integral∫
c(t)

(1 + Aκ(c(t))(t, θ)2)〈ct , icθ/|cθ |〉
2
|cθ | dθ ≤ C2

2

(
C1 + A

∫
c(t)

κ2
c(t) dst

)
= C2

2

(
C1 + A

∫
c(t)

κc(t)
dα

dst
dst

)
≤ C2

2

(
C1 + A

C4

t
C3

)
.

Taking the square root of both sides and integrating from 0 to 1, we get the result.

We apply this lemma to the simplest possible smoothing of a 1-BV rectifiable
curvec0:

c(t, θ) =
1

√
2πt

∫
R
c0(θ − ϕ)e−ϕ

2/2t2 dϕ =
1

√
2πt

∫
R
c0(ϕ)e

−(θ−ϕ)2/2t2 dϕ

for 0< t ≤ 1. Note thatt is the standard deviation of the Gaussian,not the variance. We
assumec0 has a constant speed parametrization andc′0 = (L/2π)eiα as above, whereα′

is a finite signed measure. Thus,

cθ =
L

(2π)3/2t

∫
R
eiα(θ−ϕ)−ϕ

2/2t2 dϕ,

cθθ =
iL

(2π)3/2t

∫
R
eiα(ϕ)−(θ−ϕ)

2/2t2 α′(dϕ).

Moreover, using the second expression for the convolution and the heat equation for the
Gaussian, we see thatct = tcθθ . We now estimate:

|cθ | ≤ L/2π, hence length(Ct ) ≤ L

|cθθ | ≤
L

(2π)3/2t

∫
S1

∑
n

e−(θ−ϕ−nL)2/2t2
|α′

|(dϕ)

≤ sup
x

(∑
n

e−(x−nL)
2/2t2

)L · Var(arg(c′0))

(2π)3/2t
= O(1/t),∫

S1
|cθθ | dθ ≤

L

2π

(∫
R

1
√

2πt
e−θ

2/2t2 dθ

)(∫
S1

|α′(dϕ)|

)
=

L

2π
Var(arg(c′0)),

|ct | = t |cθθ | = O(1).
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To finish the proof, all we need to do is get a lower bound on|cθ |. However,|cθ | can
be very small if the curvec0 has corners with small angles. In fact,c0 can even double
back on itself, giving a ‘corner’ with angleπ . We need to treat this as a special case.
When all the vertex angles ofc0 are less thanπ , we can get a lower bound for|cθ | as
follows. We start with the estimate

|cθ (θ)| =

∣∣∣∣ 1
√

2πt

∫
R
eiα(θ−ϕ)−ϕ

2/2t2 dϕ/eiα(θ)
∣∣∣∣

≥

∣∣∣∣ 1
√

2πt

∫
R

cos(α(θ − ϕ)− α(θ))e−ϕ
2/2t2 dϕ

∣∣∣∣.
We break up the integral overR into 3 intervals(−∞, θ − δ/2], [θ − δ/2, θ + δ/2],
[θ + δ/2,+∞) for a suitableδ. If t is sufficiently small, the integral of the Gaussian over
the first and third intervals goes uniformly to 0 and, on the middle interval, goes to 1. Thus
it suffices to estimate the cos in the middle interval. We use a remark on BV functions:

Lemma. For any BV functionf and anyC > 0, there is aδ > 0 such that on every
interval I of length less thanδ, eitherf |I has a single jump of size≥ C, or we have
max(f |I )− min(f |I ) ≤ C.

In fact, letC − ε be the size of the largest jump inf less thanC and break up the domain
of f into intervalsJi on each of which the variation off is less thanε/2, big jumps being
on their boundaries. Ifδ is less than the minimum of the lengths of theJi , we get what
we want.

Now letπ − β be the largest vertex angle of the curvec0. Using the lemma, choose a
δ so that for every intervalI in theθ -line of length less thanδ, eitherI contains a single
vertex with exterior angle≥ β/3 or maxα|I − minα|I ≤ β/3. Now if there is no vertex
in [θ − δ/2, θ + δ/2], then|α(θ −ϕ)−α(θ)| ≤ β/3 on this interval and our lower bound
is

|cθ (θ)| ≥ cos(β/3)− o(t).

On the other hand, if there is such a vertex, say atθ̄ , thenα varies by at mostβ/3 in
[θ − δ/2, θ̄ ), jumps by at mostπ −β at θ̄ and then varies by at mostβ/3 on(θ̄ , θ + δ/2].
Assumeθ < θ̄ (the caseθ > θ̄ is similar). Then

cos(α(θ − ϕ)− α(θ)) ≥

{
cos(β/3) if ϕ ∈ (θ − θ̄ , θ + δ/2],

cos(π − β + β/3) = − cos(2β/3) if ϕ ∈ [θ − δ/2, θ − θ̄ ).

Thus
|cθ (θ)| ≥

1
2(cos(β/3)− cos(2β/3))− o(t),

hence, ift is sufficiently small, we get a uniform lower bound on|cθ |. Since|κCt | ≤

|cθθ |/|cθ |
2, we get the required upper bound both on|κCt | and on the variation ofαCt , i.e.∫

S1 |κCt | and all the requirements of the lemma are satisfied.
If c0 has a vertex with angleπ , we need to add an extra argument.c0 certainly has at

most a finite number of such vertices and we can construct a new curve by drawing a circle
of radiust around each of these vertices and lettingc

(t)
0 be the curve which followsc0 until
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Fig. 3. Approximating 1-BV curves with zero angle vertices by curves with positive angle vertices.

it hits one of these circles and then replaces the vertex with a circuit around the circle: see
Figure 3. Each of the curvesc(t)0 is in the completion ofBi by the previous argument and

the path formed by thec(t)0 ’s also has finite length, hencec0 is in the completion. We omit
the details which are straightforward.

3.12. The energy of a path as ‘anisotropic area’ of its graph inR3. Consider a path
t 7→ c(t, ·) in the manifold Imm(S1,R2). It projects to a pathπ ◦ c in Bi(S1,R2) whose
energy is

EGA(π ◦ c) =
1

2

∫ b

a

GAπ(c)(Tcπ · ct , Tcπ · ct ) dt

=
1

2

∫ b

a

GAc (c
⊥
t , c

⊥
t ) dt =

1

2

∫ b

a

∫
S1
(1 + Aκ(c)2)〈c⊥t , c

⊥
t 〉|cθ | dθ dt

=
1

2

∫ b

a

∫
S1
(1 + Aκ(c)2)

〈
〈ct , icθ 〉

|cθ |2
icθ ,

〈ct , icθ 〉

|cθ |2
icθ

〉
|cθ | dθ dt

=
1

2

∫ b

a

∫
S1
(1 + Aκ(c)2)〈ct , icθ 〉

2 dθ

|cθ |
dθ dt. (1)

If the pathc is horizontal, i.e.,〈ct , cθ 〉 = 0, then〈ct , icθ 〉 = |ct | · |cθ | and we have

Ehor
GA
(c) =

1

2

∫ b

a

∫
S1
(1 + Aκ(c)2)|ct |

2
|cθ | dθ dt, 〈ct , cθ 〉 = 0. (2)

which is just the usual energy ofc.
Let c(t, θ) = (x(t, θ), y(t, θ)) be still horizontal and consider the graph

8(t, θ) = (t, x(t, θ), y(t, θ)) ∈ R3.

We also have|xtyθ − xθyt | = |det(ct , cθ )| = |ct | · |cθ | and for the vector product we get
8t ×8θ = (xtyθ − xθyt ,−yθ , xθ ), so

|8t ×8θ |
2

= (xtyθ − xθyt )
2
+ y2

θ + x2
θ = (x2

θ + y2
θ )(x

2
t + y2

t + 1) = |cθ |
2(|ct |

2
+ 1).
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We express nowEhor(c) as an integral over the immersed surfaceS ⊂ R3 parametrized
by8 in terms of the surface areadµS = |8t ×8θ | dθ dt as follows:

Ehor
GA
(c) =

1

2

∫ b

a

∫
S1
(1 + Aκ(c)2)

|ct |
2
|cθ |

|8t ×8θ |
|8t ×8θ | dθ dt

=
1

2

∫
[a,b]×S1

(1 + Aκ(c)2)
|ct |

2√
|ct |2 + 1

dµS .

Next we want to express the integrand as a functionγ of the unit normalnS =

(8t ×8θ )/|8t ×8θ |. Let e0 = (1,0,0). Then the absolute value of thet-componentn0
S

of the unit normalnS is

|n0
S | := |〈e0, nS〉| =

|ct |√
|ct |2 + 1

, and
|ct |

2√
|ct |2 + 1

=
|n0
S |

2√
1 − |n0

S |
2
.

Thus for horizontalc (i.e., withct ⊥ cθ ) we have

Horizontal energy as anisotropic area.

Ehor
GA
(c) =

1

2

∫
[a,b]×S1

(1 + Aκ(c)2)
|n0
S |

2√
1 − |n0

S |
2
dµS . (3)

Here the final expression is only in terms of the surfaceS and does not depend on the
curvec being horizontal. This anisotropic area functional has to be minimized in order to
prove that geodesics exists between arbitrary curves (of the same degree) inBi(S

1,R2).
Thus we are led to

Question. For immersionsc0, c1 : S1
→ R2 does there exist an immersed surface

S = (ins[0,1], c) : [0,1] × S1
→ R × R2 such that the functional(3) is critical at S?

A first step is:

Bounding the area. For any path[a, b] 3 t 7→ c(t, ) the area of the graph surface
S = S(c) is bounded as follows:

Area(S) =

∫
[a,b]×S1

dµS ≤ 2Ehor
GA
(c)+ max

t
`(c(t, ))(b − a). (4)

Proof. Writing the unit normalnS = (n0
S, n

1
S, n

2
S) ∈ S2 according to the coordinates

(t, x, y) we have

|n1
S | + |n2

S | +
|n0
S |

2√
1 − |n0

S |
2

≥ |n1
S |

2
+ |n2

S |
2
+ |n0

S |
2

= 1.

Since|n1
S |dµS is the area element of the projection ofS onto the(t, y)-plane we have
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Area(S) =

∫
[a,b]×S1

dµS ≤

∫
[a,b]×S1

(1 + Aκ(c)2)

(
|n1
S | + |n2

S | +
|n0
S |

2√
1 − |n0

S |
2

)
dµS

≤ 2Ehor
GA
(c)+ max

t
`(c(t, ))(b − a). ut

4. Geodesic equations and sectional curvatures

4.1. Geodesics onImm(S1,R2). The energy of a curvet 7→ c(t, ·) in the space
Imm(S1,R2) is

EGA(c) =
1

2

∫ b

a

∫
S1
(1 + Aκ2

c )〈ct , ct 〉|cθ | dθ dt.

By calculating its first variation, we get the equation for a geodesic:

Geodesic equation.

((1 + Aκ2)|cθ | · ct )t =

(
−1 + Aκ2

2
·
|ct |

2

|cθ |
· cθ + A

(κ|ct |
2)θ

|cθ |2
· icθ

)
θ

. (1)

Proof. From 2.2 we have

κ(c)s =
〈icsθ , cθθ 〉

|cθ |3
+

〈icθ , csθθ 〉

|cθ |3
− 3κ

〈csθ , cθ 〉

|cθ |2

and
cθθ =

〈cθθ , cθ 〉

|cθ |2
cθ +

〈cθθ , icθ 〉

|cθ |2
icθ =

|cθ |θ

|cθ |
cθ + κ(c)|cθ |icθ .

Now we compute

∂s |0E(c) =
1

2
∂s |0

∫ b

a

∫
S1
(1 + Aκ2)〈ct , ct 〉|cθ | dθ dt

=

∫ b

a

∫
S1

(
Aκκs |cθ | |ct |

2
+ (1 + Aκ2)〈cst , ct 〉|cθ | +

1 + Aκ2

2
|ct |

2 〈csθ , cθ 〉

|cθ |

)
dθ dt

=

∫ b

a

∫
S1

(
Aκ〈icsθ , cθθ 〉

|ct |
2

|cθ |2
+ Aκ〈icθ , csθθ 〉

|ct |
2

|cθ |2
− 3Aκ2

〈csθ , cθ 〉
|ct |

2

|cθ |

−

〈
cs, ((1 + Aκ2)|cθ |ct )t +

(
1 + Aκ2

2

|ct |
2

|cθ |
cθ

)
θ

〉)
dθ dt

=

∫ b

a

∫
S1

(〈
cs, A

(
κ

|ct |
2

|cθ |2
icθθ

)
θ

〉
+

〈
cs, A

(
κ

|ct |
2

|cθ |2
icθ

)
θθ

〉
+

〈
cs,3A

(
κ2 |ct |

2

|cθ |
cθ

)
θ

〉
−

〈
cs, ((1 + Aκ2)|cθ |ct )t +

(
1 + Aκ2

2

|ct |
2

|cθ |
cθ

)
θ

〉)
dθ dt

=

∫ b

a

∫
S1

〈cs,−((1 + Aκ2)|cθ |ct )t + Fθ 〉 dθ dt
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where

F = Aκ
|ct |

2

|cθ |2
icθθ + A(κ|ct |

2)θ
icθ

|cθ |2
− 2Aκ|ct |

2 |cθ |θ icθ

|cθ |3
+ Aκ

|ct |
2

|cθ |2
icθθ

+ 3Aκ2 |ct |
2

|cθ |
cθ −

1 + Aκ2

2

|ct |
2

|cθ |
cθ .

If we substitute the expression forcθθ and simplify, this reduces to

F =
−1 + Aκ2

2

|ct |
2

|cθ |
cθ + A(κ|ct |

2)θ
icθ

|cθ |2
,

which gives the required formula for geodesics.

PuttingA=0 in 4.1.1 we get the geodesic equation for theH 0-metric on Imm(S1,R2),

(|cθ |ct )t = −
1

2

(
|ct |

2cθ

|cθ |

)
θ

. (2)

4.2. Geodesics onBi(S1,R2). We may also restrict to geodesics which are perpendic-
ular to the orbits of Diff(S1), i.e. 〈ct , cθ 〉 ≡ 0, obtaining the geodesics in the quotient
spaceBi(S1,R2). To write this in the simplest way, we introduce the ‘velocity’a by set-
ting ct = iacθ/|cθ | (so that|ct |2 = a2). When we substitute this into the above geodesic
equation, the equation splits into a multiple ofcθ and a multiple oficθ . The former van-
ishes identically and the latter gives

((1 + Aκ2)|cθ |a)t
icθ

|cθ |
=

−1 + Aκ2

2
a2

(
cθ

|cθ |

)
θ

+ A

(
(κa2)θ

|cθ |

)
θ

icθ

|cθ |
, or

((1 + Aκ2)|cθ |a)t =
−1 + Aκ2

2
κ|cθ |a

2
+ A

(
(κa2)θ

|cθ |

)
θ

.

If we use derivatives with respect to arc length instead ofθ and write these with the
subscripts, so thatfs = fθ/|cθ |, this simplifies. We need

|cθ |t =
〈cθ , ctθ 〉

|cθ |
= −

〈cθθ , ct 〉

|cθ |
= −a

〈cθθ , icθ 〉

|cθ |2
= −aκ|cθ |.

which gives us a simple form for the equation for geodesics onBi(S
1,R2):

((1 + Aκ2)a)t =
1 + 3Aκ2

2
κa2

+ A(κa2)ss . (1)

Finally, we may expand thet-derivatives on the left hand side, using the formulaκt =

aκ2
+ ass noted in 2.2.7; we also collect all constraint equations that we chose along the

way:

0 = 〈ct , cs〉, ct = aics, κ = 〈css, ics〉,

at =

1
2κa

2
+ A(a2(κss −

1
2κ

3)+ 4κsaas + 2κa2
s )

1 + Aκ2
.

(2)
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Handle this with care: Going to unit speed parametrization (so thatfs is really a holo-
nomic partial derivative) destroys the first constraint ‘horizontality’. This should be seen
as a gauge fixing.

4.3. Geodesics onBi(S1,R2) for A = 0. Let us now setA = 0. We keep looking
at horizontal geodesics, so that〈ct , cθ 〉 = 0 andct = iacθ/|cθ | for a ∈ C∞(S1). We
use the functionsa, s = |cθ |, andκ. We use equations from 4.2 but we do not use the
anholonomic derivative:

st = −aκs, at =
1
2κa

2, κt = aκ2
+

1

s

(
aθ

s

)
θ

= aκ2
+
aθθ

s2
−
aθ sθ

s3
. (1)

We may assume thats|t=0 is constant. Letv(θ) = a(0, θ) be the initial value fora. Then
from equations (1) we get

st

s
= −aκ = −2

at

a
, hence log(sa2)t = 0,

so thatsa2 is constant int ,

s(t, θ)a(t, θ)2 = s(0, θ)a(0, θ)2 = v(θ)2, (2)

a smooth family of conserved quantities along the geodesic. This leads to the substitutions

s =
v2

a2
, κ = 2

at

a2
,

which transform the last equation (1) to

at t − 4
a2
t

a
−
a6aθθ

2v4
+
a6aθvθ

v5
−
a5a2

θ

v4
= 0, a(0, θ) = v(θ), (3)

a non-linear hyperbolic second order equation. Note that (2) implies that whereverv = 0
then alsoa = 0 for all t . For that reason, let us transform equation (3) into a less singular
form by substitutinga = vb. Note thatb = 1/

√
s. The outcome is

(b−3)t t = −
v2

2
(b3)θθ − 2vvθ (b

3)θ −
3vvθθ

2
b3, b(0, θ) = 1. (4)

4.4. The induced metric onBi,f (S1,R2) in a chart. We also want to compute the cur-
vature ofBi(S1,R2) in this metric. For this, we need second derivatives and the most con-
venient way to calculate these seems to be to use a local chart. Consider the smooth prin-
cipal bundleπ : Immf (S1,R2) → Bi,f (S

1,R2) with structure group Diff(S1) described
in 2.4.3. We shall describe the metric in the following chart nearC ∈ Bi,f (S

1,R2): Let
c ∈ Immf (S1,R2) be parametrized by arc length withπ(c) = C of lengthL, with unit
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normalnc. We assume that the parameterθ runs in the scaled circleS1
L below. As in the

proof of 2.4.3 we consider the mapping

ψ : C∞(S1
L, (−ε, ε)) → Immf (S

1
L,R

2), Q(c) := ψ(C∞(S1
L, (−ε, ε))),

ψ(f )(θ) = c(θ)+ f (θ)nc(θ) = c(θ)+ f (θ)ic′(θ),

π ◦ ψ : C∞(S1
L, (−ε, ε)) → Bi,f (S

1,R2),

whereε is so small thatψ(f ) is an embedding for eachf . By 2.4.3 the mapping(π◦ψ)−1

is a smooth chart onBi,f (S1
L,R

2). Note that:

ψ(f )′ = c′ + f ′ic′ + f ic′′ = (1− f κc)c
′
+ f ′ic′,

ψ(f )′′ = c′′ + f ′′ic′ + 2f ′ic′′ + f ic′′′ = −(2f ′κc + f κ ′
c)c

′
+ (κc + f ′′

− f κ2
c )ic

′,

nψ(f ) =
1√

(1− f κc)
2
+ f ′2

((1− f κc)ic
′
− f ′c′),

Tfψ · h = h · ic′ ∈ C∞(S1,R2) = Tψ(f ) Immf (S
1
L,R

2)

=
h(1− f κc)√

(1− f κc)
2
+ f ′2

nψ(f ) +
hf ′

(1− f κc)2 + f ′2
ψ(f )′,

(Tfψ · h)⊥ =
h(1− f κc)√

(1− f κc)
2
+ f ′2

nψ(f ) ∈ Nψ(f ),

κψ(f ) =
1

((1− f κc)2 + f ′2)3/2
〈iψ(f )′, ψ(f )′′〉

=
κc + f ′′

− 2f κ2
c − ff ′′κc + f 2κ3

c + 2f ′2κc + ff ′κ ′
c

((1− f κc)2 + f ′2)3/2
.

LetGA denote also the induced metric onBi,f (S1
L,R

2). Sinceπ is a Riemannian sub-
mersion,Tψ(f )π : (Nψ(f ),GAψ(f )) → (Bi,f (S

1
L,R

2),GAπ(ψ(f ))) is an isometry. Then we

compute, forf ∈ C∞(S1
L, (−ε, ε)) andh, k ∈ C∞(S1

L,R),

((π ◦ ψ)∗GA)f (h, k) = GAπ(ψ(f ))(Tf (π ◦ ψ)h, Tf (π ◦ ψ)k)

= GAψ(f )((Tfψ · h)⊥, (Tfψ · k)⊥)

=

∫
S1
L

(1 + Aκ2
ψ(f ))〈(Tfψ · h)⊥, (Tfψ · k)⊥〉|ψ(f )′| dθ

=

∫
S1
L

(1 + Aκ2
ψ(f ))

hk(1 − f κc)
2√

(1 − f κc)
2
+ f ′2

dθ.

This is the expression from which we have to compute the geodesic equation in the chart
onBi,f (S1

L,R
2).
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4.5. Computing the Christoffel symbols inBi,f (S1
L,R

2) at C = π(c). We have to
compute second derivatives inf of the expression of the metric in 4.2. For that we expand
the two main contributing expressions inf to order 2, where we putκ = κc:

κψ(f )

= (1 − 2f κ + f 2κ2
+ f ′2)−3/2(κ + f ′′

− 2f κ2
− ff ′′κ + f 2κ3

+ 2f ′2κ + ff ′κ ′)

= κ + (f ′′
+ f κ2)+ (f 2κ3

+
1
2f

′2κ + ff ′κ ′
+ 2ff ′′κ)+O(f 3),

(1 − f κ)2(1 − 2f κ + f 2κ2
+ f ′2)−1/2

= 1 − f κ −
1
2f

′2
+O(f 3).

Thus

(1 + Aκ2
ψ(f ))

(1 − f κc)
2√

(1 − f κc)
2
+ f ′2

= 1 + Aκ2
+ 2Af ′′κ + Af κ3

− f κ

−
1
2f

′2
+ Af 2κ4

+ A1
2f

′2κ2
+ 2Aff ′κκ ′

+ Af ′′2
+ 4Aff ′′κ2

and finally

GAf (h, k) = ((π ◦ ψ)∗GA)f (h, k)

=

∫
S1
L

hk((1 + Aκ2)+ (2Af ′′κ + Af κ3
− f κ)−

1
2f

′2

+ A(4ff ′′κ2
+ f 2κ4

+
1
2f

′2κ2
+ 2ff ′κκ ′

+ f ′′2)+O(f 3)) dθ. (1)

We differentiate the metric:

dGA(f )(l)(h, k) =

∫
S1
L

hk(2Al′′κ + (Aκ3
− κ)l + 4Alf ′′κ2

+ 4Af l′′κ2

+ 2Af lκ4
+ (Aκ2

− 1)f ′l′ + 2Alf ′κκ ′
+ 2Af l′κκ ′

+ 2Af ′′l′′ +O(f 2)) dθ

and compute the Christoffel symbols:

−2GAf (0f (h, k), l) = − dGA(f )(l)(h, k)+ dGA(f )(h)(k, l)+ dGA(f )(k)(l, h)

=

∫
S1
L

l((Aκ3
− κ + 2Aκκ ′f ′

+ 4Aκ2f ′′
+ 2Aκ4f )kh

+ (2Aκ + 4Aκ2f + 2Af ′′)(h′′k + hk′′)

+ (Aκ2f ′
− f ′

+ 2Aκκ ′f )(h′k + hk′)+O(f 2)) dθ

−

∫
S1
L

(l′(Aκ2f ′hk − f ′hk + 2Aκκ ′f hk)

+ l′′(2Aκhk + 4Aκ2f hk + 2Af ′′hk)+O(f 2)) dθ
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=

∫
S1
L

l((Aκ3
− κ − 2Aκ ′′)hk − 4Aκ ′(h′k + hk′)− 4Aκh′k′

+ (−2Af (4)− f ′′
+ 2Aκ4f − 6Aκ ′2f − 6Aκκ ′′f − 10Aκκ ′f ′

+ Aκ2f ′′)hk

− (2f ′
+ 4Af ′′′

+ 12Aκκ ′f + 6Aκ2f ′)(h′k + hk′)

− 2(4Aκ2f + 2Af ′′)h′k′
+O(f 2)) dθ.

Thus

GAf (0f (h, k), l)

=

∫
S1
L

l((1
2κ −

1
2Aκ

3
+ Aκ ′′)hk + 2Aκ ′(h′k + hk′)+ 2Aκh′k′

− (−Af (4) −
1
2f

′′
+ Aκ4f − 3Aκ ′2f − 3Aκκ ′′f − 5Aκκ ′f ′

+
1
2Aκ

2f ′′)hk

+ (f ′
+ 2Af ′′′

+ 6Aκκ ′f + 3Aκ2f ′)(h′k + hk′)

+ (4Aκ2f + 2Af ′′)h′k′
+O(f 2)) dθ.

At the center of the chart, forf = 0, we get

GA0 (00(h, k), l)

=

∫
S1
L

l((1
2κ −

1
2Aκ

3
+ Aκ ′′)hk + 2Aκ ′(h′k + hk′)+ 2Aκh′k′) dθ

=

∫
S1
L

l

(
(1

2κ −
1
2Aκ

3
+ Aκ ′′)hk + 2Aκ ′(h′k + hk′)+ 2Aκh′k′

1 + Aκ2

)
(1 + Aκ2) dθ

= GA0

(
(1

2κ −
1
2Aκ

3
+ Aκ ′′)hk + 2Aκ ′(h′k + hk′)+ 2Aκh′k′

1 + Aκ2
, l

)
so that

00(h, k) =
(1

2κ −
1
2Aκ

3
+ Aκ ′′)hk + 2Aκ ′(h′k + hk′)+ 2Aκh′k′

1 + Aκ2
. (2)

If we let h = k = ft , this leads to the geodesic equation, valid atf = 0:

ft t =
(1

2κ −
1
2Aκ

3
+ Aκ ′′)f 2

t + 4Aκ ′ftf
′
t + 2Aκ(f ′

t )
2

1 + Aκ2
.

If we substitutea for ft andat for ft t , this is the same as the previous geodesic equation
derived in 4.2 by variational methods. There is a subtle point here, however: why is it ok
to identify the second derivativesat andft t with each other? To check this letc(θ) +

(ta1(θ) +
t2

2 a2(θ))ic
′(θ) be a 2-jet in our chart. Then if we reparametrize the nearby

curves by substitutingθ −
t2

2 a1a
′

1 for θ , letting
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c(t, θ) = c

(
θ −

t2

2
a1a

′

1

)
+

(
ta1

(
θ −

t2

2
a1a

′

1

)
+
t2

2
a2

(
θ −

t2

2
a1a

′

1

))
ic

(
θ −

t2

2
a1a

′

1

)′

≡ c(θ)−

(
t2

2
a1a

′

1

)
c′(θ)+

(
ta1(θ)+

t2

2
a2(θ)

)
ic′(θ) mod t3,

then〈c′, ct 〉 ≡ 0 modt2, hence this 2-jet is horizontal and〈ct t , ic′〉 ≡ a2 mod t as re-
quired.

4.6. Computation of the sectional curvature inBi,f (S1
L,R

2) at C. We now go further.
We use the following formula which is valid in a chart:

2Rf (m, h,m, h) = 2GAf (Rf (m, h)m, h)

= −2d2GA(f )(m, h)(h,m)+ d2GA(f )(m,m)(h, h)+ d2GA(f )(h, h)(m,m)

−2GA(0(h,m), 0(m, h))+ 2GA(0(m,m), 0(h, h)). (1)

The sectional curvature at the two-dimensional subspacePf (m, h) of the tangent space
which is spanned bym andh is then given by

kf (P (m, h)) = −
GAf (R(m, h)m, h)

‖m‖2‖h‖2 −GAf (m, h)
2
. (2)

We compute this directly forf = 0. From the expansion up to order 2 ofGAf (h, k) in
4.5.1 we get

1

2!
d2GA(0)(m, l)(h, k) =

∫
S1
L

hk(−1
2m

′l′

+ A(2(ml′′ +m′′l)κ2
+mlκ4

+
1
2m

′l′κ2
+ (ml′ +m′l)κκ ′

+m′′l′′)) dθ. (3)

Thus we have

− d2GA(0)(m, h)(h,m)+
1
2d

2GA(0)(m,m)(h, h)+
1
2d

2GA(0)(h, h)(m,m)

= −2
∫
S1
L

hm(−1
2m

′h′

+A(2(mh′′
+m′′h)κ2

+mhκ4
+

1
2m

′h′κ2
+ (mh′

+m′h)κκ ′
+m′′h′′)) dθ

+

∫
S1
L

hh(−1
2m

′2
+ A(4mm′′κ2

+m2κ4
+

1
2m

′2κ2
+ 2mm′κκ ′

+m′′2)) dθ

+

∫
S1
L

mm(−1
2h

′h′
+ A(4hh′′κ2

+ hhκ4
+

1
2h

′h′κ2
+ 2hh′κκ ′

+ h′′h′′)) dθ

=

∫
S1
L

(1
2(Aκ

2
− 1)(mh′

−m′h)2 + A(mh′′
−m′′h)2) dθ.
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For the second part of the curvature we have

−G0(00(h,m), 00(m, h))+G0(00(m,m), 00(h, h))

=

∫
S1
L

−((1
2κ −

1
2Aκ

3
+ Aκ ′′)hm+ 2Aκ ′(h′m+m′h)+ 2Aκh′m′)2

dθ

1 + Aκ2

+

∫
S1
L

((1
2κ −

1
2Aκ

3
+ Aκ ′′)m2

+ 4Aκ ′mm′
+ 2Aκm′2)

· ((1
2κ −

1
2Aκ

3
+ Aκ ′′)h2

+ 4Aκ ′hh′
+ 2Aκh′2)

dθ

1 + Aκ2

=

∫
S1
L

((Aκ2
− A2κ4

+ 2A2κκ ′′
− 4A2κ ′2)(mh′

−m′h)2)
dθ

1 + Aκ2
.

Thus we get

R0(m, h,m, h) = GA0 (R0(m, h)m, h)

=

∫
S1
L

(1
2(Aκ

2
− 1)(mh′

−m′h)2 + A(mh′′
−m′′h)2) dθ

+

∫
S1
L

((Aκ2
− A2κ4

+ 2A2κκ ′′
− 4A2κ ′2)(mh′

−m′h)2)
dθ

1 + Aκ2
.

LettingW = mh′
− hm′ be the Wronskian ofm andh and simplifying, we have

R0(m, h,m, h)

=

∫
S1
L

(
−(Aκ2

− 1)2 + 4A2κκ ′′
− 8A2κ ′2

2(1 + Aκ2)

)
W2 dθ +

∫
S1
L

AW ′2 dθ.
(4)

What does this formula say? First of all, if supp(m)∩supp(h) = ∅, the sectional curvature
in the plane spanned bym andh is 0. Secondly, we can divide the curvec into two parts:

c+A = set of points whereκκ ′′ < 2(κ ′)2 +

(
A−1

− κ2

2

)2

,

c−A = set of points whereκκ ′′ > 2(κ ′)2 +

(
A−1

− κ2

2

)2

.

Note that ifA is sufficiently small,c−A = ∅ and even ifA is large,c−A need not be non-
empty. But if supp(m), supp(h) ⊂ c−A , the sectional curvature is always negative. The
interesting case is when supp(m), supp(h) ⊂ c+A . We may introduce the self-adjoint dif-
ferential operator onL2(S1):

Sf = f ′′
+
(Aκ2

− 1)2 − 4A2κκ ′′
+ 8A2κ ′2

2A(1 + Aκ2)
f

so thatR = −A〈SW,W 〉. The eigenvalues ofS tend to−∞, henceS has a finite number
of positive eigenvalues. If we take, for example,m = 1 andh such thath′ is in the
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span of the positive eigenvalues, the corresponding sectional curvature will be positive.
In general, the condition that the sectional curvature be positive is that the Wronskian
W have a sufficiently large component in the positive eigenspace ofS. The special case
wherec is the unit circle may clarify the picture: then

Sf = f ′′
+

(A− 1)2

2A(1 + A)
f

and the eigenfunctions are linear combinations of sines and cosines. It is easy to see that
for anyA, a plane spanned bym andh of pure frequenciesk and l will have positive
curvature if and only ifk andl are sufficiently near each other (asymptotically|k − l| <

|A− 1|/
√
A+ a2), hence ‘beat’ at a low frequency.

4.7. The sectional curvature for the inducedH 0-metric on Bi,f (S1
L,R

2) in a chart.
In the setting of 4.2 we have, forf ∈ C∞(S1

L, (−ε, ε)) andh, k ∈ C∞(S1
L,R),

G0
f (h, k) = ((π ◦ ψ)∗G0)f (h, k) = G0

π(ψ(f ))(Tf (π ◦ ψ)h, Tf (π ◦ ψ)k)

= G0
ψ(f )((Tfψ · h)⊥, (Tfψ · k)⊥) =

∫
S1
L

hk(1 − f κc)
2√

(1 − f κc)
2
+ f ′2

dθ. (1)

At the center of the chart described in 4.4, i.e., forf = 0, the Christoffel symbol 4.5.2
for A = 0 becomes

00(h, k) =
1
2κchk. (2)

The curvature 4.6.4 atf = 0 forA = 0 becomes

R0(m, h,m, h) = G0(R0(m, h)m, h)

= −
1

2

∫
S1
L

(h′m− hm′)2 dθ = −
1

2

∫
S1
L

W(m, h)2 dθ (3)

and the sectional curvaturek0(P (m, h)) from 4.6.2 forA = 0 andf = 0 is non-negative.
In the full chart 4.2, starting from the metric 4.6.1, we managed to compute the full

geodesic equation not just forf = 0 but for generalf , so long asA = 0. The outcome is

0f (h, h) =
κch

2

1 − f κc
+

−
1
2κc(1 − f κc)h

2
+ (1

2h
2f ′′

+ 2hh′f ′)

((1 − f κc)2 + f ′2)

−
κch

2f ′2

(1 − f κc)((1 − f κc)2 + f ′2)
+

3
2κc(1 − f κc)h

2f ′2
−

3
2h

2f ′2f ′′

((1 − f κc)2 + f ′2)2
. (4)

The geodesic equation is thus

ft t = −
κcf

2
t

1 − f κc
−

−
1
2κc(1 − f κc)f

2
t + (1

2f
2
t fθθ + 2ftftθfθ )

((1 − f κc)2 + f 2
θ )

+
κcf

2
t fth

2

(1 − f κc)((1 − f κc)2 + f 2
θ )

−

3
2κc(1 − f κc)f

2
t f

2
θ −

3
2f

2
t f

2
θ fθθ

((1 − f κc)2 + f 2
θ )

2
. (5)

ForA > 0 we were unable to get the analogous result.
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5. Examples and numerical results

5.1. The geodesics running through concentric circles.The simplest possible geodesic
in Bi is given by the set of all circles with common center. LetCr be the circle of radiusr
with center the origin. Consider the path of such circlesCr(t) given by the parametrization
c(t, θ) = r(t)eiθ , wherer(t) is a smooth increasing functionr : [0,1] → R>0. Then
κc(t, θ) = 1/r(t). If we vary r then the horizontal energy and the variation of this curve
are

Ehor
GA
(c) =

1

2

∫ 1

0

∫
S1
(1 + A/r2)r2

t r dθ dt,

∂s |s=0E
hor
GA
(c) =

∫ 1

0

∫
S1

(
1 +

A

r2

)
rs

(
−rt t −

(1 − A/r2)

2(r + A/r)
r2
t

)
r dθ dt,

so thatc is a geodesic if and only if

rt t +
(1 − A/r2)

2(r + A/r)
r2
t = 0. (1)

Also the geodesic equation 4.1.1 reduces to (1) forc of this form.
The solution of (1) can be written in terms of the inverse of a complete elliptic integral

of the second kind. More important is to look at what happens for small and larger. As
r → 0, the ODE reduces to

rt t −
r2
t

2r
= 0,

whose general solution isr(t) = C(t − t0)
2 for some contantsC, t0. In other words, at

one end, the path ends in finite time with the circles imploding at their common center.
Note thatr ′ → 0 asr → 0 but not fast enough to prevent the collapse. On the other hand,
asr → ∞, the ODE becomes

rt t +
r2
t

2r
= 0,

whose general solution isr(t) = C(t − t0)
2/3 for some constantsC, t0. Thus at the other

end of the geodesic, the circles expand forever but with decreasing speed.
An interesting point is that this geodesic has conjugate points on it, so that it is an

extremal path but not a local minimum for length over all intervals. This is a concrete
reflection of the collapse of the metric whenA = 0. To work this out, take anyf (θ)
such that

∫ 2π
0 f dθ = 0 and any functiona(t). ThenX = f (θ)a(t)∂/∂r is a vector field

along the geodesic, i.e. a family of tangent vectors toBe at each circleCr(t) normal to the
tangent to the geodesic. Its length is easily seen to be

‖X‖
2
Cr(t)

=

(
r(t)+

A

r(t)

)
a(t)2

∫ 2π

0
f (θ)2 dθ.

We need to work out its covariant derivative:

∇d/dt (X) = f (θ)at
∂

∂r
+ 0Cr

(
rt
∂

∂r
, f (θ)a

∂

∂r

)
.
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Using a formula for the Christoffel symbols which we get from 4.2.2 by polarizing, and
noting thatκ ≡ 1/r, κs ≡ 0, we get

∇d/dt (X) = f (θ)at
∂

∂r
+ f (θ)art

(
1 − A/r2

2(r + A/r)

)
∂

∂r

= f (θ)(r + A/r)−1/2((r + A/r)1/2a)t
∂

∂r
.

(This formula also follows from the fact that the vectors(r + A/r)−1/2∂/∂r have length
independent oft , hence covariant derivative zero.) Jacobi’s equation is therefore

f (θ)(r + A/r)−1/2((r + A/r)1/2a)t t
∂

∂r
+ R

(
X, rt

∂

∂r

)(
rt
∂

∂r

)
= 0, (2)

whereR is the curvature tensor. For later purposes, it is convenient to write this equation
usingr as the independent variable along the geodesic rather thant and think ofa as a
function ofr. Note that for any functionb along the geodesic,bt = brrt and

bt t = brrr
2
t + brrt t =

(
brr −

(1 − A/r2)

2(r + A/r)
br

)
r2
t .

Then a somewhat lengthy bit of algebra shows that:

(r + A/r)−1/2((r + A/r)1/2a)t t = (r + A/r)−1/4((r + A/r)1/4a)rrr
2
t + F(r)ar2

t ,

where

F(r) = −
5

16

(
1 − A/r2

r + A/r

)2

+
A

2r3(r + A/r)
.

To work out the structure ofR in this case, use the fact that the circlesCr and
the vector field∂/∂r are invariant under rotations. This means that the mapf 7→

R(∂/∂r, f ∂/∂r)(∂/∂r) has the two properties: it commutes with rotations and it is sym-
metric. The only such maps are diagonal in the Fourier basis, i.e. there are real constants
λn such that

R

(
∂/∂r,

{
cos(nθ)∂/∂r
sin(nθ)∂/∂r

)
(∂/∂r) = λn

{
cos(nθ)∂/∂r
sin(nθ)∂/∂r

.

To evaluateλn, we take the inner product with cos(nθ) (or sin(nθ)) and use our calcula-
tion ofR0(m, h,m, h) in Section 4.6 to show〈
R

(
∂

∂r
, cos(nθ)

∂

∂r

)(
∂

∂r

)
, cos(nθ)

∂

∂r

〉
= R0

(
∂

∂r
, cos(nθ)

∂

∂r
,
∂

∂r
, cos(nθ)

∂

∂r

)
=

∫ 2π

0

(
−
(1 − A/r2)2

2(1 + A/r2)
W2

+ AW ′2
)
r dθ

where

W = 1 ·
d

ds
cos(nθ) = −n

sin(nθ)

r
and W ′

=
d

ds
W = −n2 cos(nθ)

r2
.
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Simplifying gives

λn

∥∥∥∥ cos(nθ)
∂

∂r

∥∥∥∥2

=

∫ 2π

0

(
−
(1 − A/r2)2

2(r + A/r)
n2 sin2(nθ)+

A

r3
n4 cos2(nθ)

)
dθ

= −
(1 − A/r2)2

2(r + A/r)
n2π +

A

r3
n4π,

hence

λn = −
(1 − A/r2)2

2(r + A/r)2
n2

+
A

r3(r + A/r)
n4.

Thus forX = cos(nθ)an(t)∂/∂r, if we combine everything, Jacobi’s equation reads

(r + A/r)−1/4((r + A/r)1/4an)rr

=

(
−
(1 − A/r2)2

2(r + A/r)2
(n2

−
5
8)+

A

r3(r + A/r)
(n4

−
1
2)

)
an. (3)

Calling the right hand side thepotentialof Jacobi’s equation, we can check that for
eachn, the potential is positive for smallr, negative for larger and it has one zero,
approximately at

√
2An for largen. Thus, for smallr, these perturbations diverge from

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5
The Jacobi vector field and Jacobi potential for a triangular perturbation; 1st conj pt = 10.77 \sqrt(A)

Fig. 4. The potential in the Jacobi ODE and its solution for an infinitesimal triangular perturbation
of the circles in the geodesic of concentric circles. Note the first conjugate point at 10.77

√
A.
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the geodesic of circles. For larger, if we write bn = (r + A/r)1/4an, then Jacobi’s
equation approaches

(bn)rr ≈ −
n2

− 0.625

2r2
bn.

This is solved bybn = cxλ+c′xλ
′

whereλ, λ′ are solutions ofλ2
−λ = −(n2

−0.625)/2.
Forn = 1,λ, λ′ are real andbn has no zeros; but forn > 1,λ, λ′ have an imaginary part,
sayiγn, and

bn ≈
√
r(c cos(γn log(r))+ c′ sin(γ log(r)))

with infinitely many zeros.
Figure 4 shows the solution forn = 3 which approaches 0 asr → 0. The first zero

of this solution is about 10.77
√
A, making it a conjugate point ofr = 0. For othern, the

first such conjugate point appears to be bigger, so we conclude: on any segment 0< r1 <

r2 < 10.77
√
A, the geodesic of circles is locally (and presumably globally) minimizing.

5.2. The geodesic connecting two distant curves.For any two distant curvesC1, C2,
one can construct paths from one to the other by (a) changingC1 to some auxiliary curve
D nearC1, (b) translatingD without modifying it to a point nearC2 and (c) changing
the translated curveD toC2. If C1 andC2 are very far from each other, the energy of the
translation will dominate the energy required to modify them both toD. Thus we expect
that a geodesic between distant curves will asymptotically utilize a curveD which is
optimized for least energy translation. To find such curvesD, heuristically we may argue
that it should be a curve such that the path given by all its translates in a fixed direction is
a geodesic.

Such geodesics can be found as special cases of the general geodesic. We fixe =

(1,0) as the direction of translation and assume that the path{D + te} is a geodesic. We
need to express this geodesic up to orderO(t2) in the chart used in Section 4.4. Letc(s)
be the arc length parametrization ofD andθ(s) be the orientation ofD at pointc(s), i.e.
cs = cos(θ) + i sin(θ). Then a little calculation shows that if we reparametrize nearby
curves vias̃ = s − 〈e, cs〉t , then the path of translates in directione is just

c(s̃)+ te = c(s)+

(
t〈e, ics〉 +

t2

2
〈e, cs〉

2κ +O(t3)

)
ics

= c(s)+

(
− sin(θ(s))t +

t2

2
cos2(θ(s)κ)+O(t3)

)
ics .

Thus, in the notation of 4.2,a = − sin(θ), henceas = − cos(θ)κ and, moreover,at =

cos2(θ)κ. Substituting this in the geodesic formula 4.2.1, we get

(1 + Aκ2) cos2(θ)κ

=
κ sin2(θ)

2
+ A((κss − κ3/2) sin2(θ)+ 4 cos(θ) sin(θ)κκs + 2κ3 cos2(θ)).
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Sinceκ = θs , this becomes, after some manipulation, a singular third order equation for
θ(s):

θsss = 4 cot(θ)θsθss + (1
2 − cot2(θ))θs(θ

2
s − 1/A).

One solution of this equation isθ(s) ≡ 1/
√
A, i.e. a circle of radius

√
A. In fact, this

seems to be the only simple closed curve which solves this equation. However, if we drop
smoothness, a weak solution of this equation is given by theC1, piecewiseC2 curve made
up of two semi-circles of radius

√
A joined by two straight line segments parallel to the

vectore and separated by the distance 2
√
A (as in Figure 5). Note that such ‘cigar’-shaped

curves can be made with line segments of any length.

Fig. 5. Top: the geodesic joining circles of radius 1 at distance 3 apart withA = .1 (using 20
time samples and a 40-gon for the circle). Bottom: the geodesic joining 2 ‘random’ shapes of size
about 1 at distance 5 apart withA = .25 (using 20 time samples and a 48-gon approximation for
all curves). In both cases the middle curve which is highlighted.

A numerical approach to minimizeEhor
G1 (c) for variationsc with initial and end curves

circles at a certain distance produced the two such geodesics shown in Figure 5. Note that
the middle curve is indeed close to such a ‘cigar’-shape. However, the width of this shape
is somewhat greater than 2

√
A: this is presumably because the end-curves of this path

are not sufficiently far apart. Thus experiments as well as the theory suggest strongly that
geodesics joining any two curves sufficiently far apart compared to their size asymptoti-



Riemannian geometries on spaces of plane curves 45

cally approach a constant ‘cigar’-shapedC1 intermediate curve made up of 2 semi-circles
of radius

√
A and 2 parallel line segments. We conjecture that this is true.

5.3. The growth of a ‘bump’ on a straight line whenA = 0. We have seen above
that the geodesic spray is locally well defined whenA = 0. To understand this spray and
see whether it appears to have global solutions, we take that the initial curve contains a
segment with curvature identically zero, i.e. contains a line segment, and that the initial
velocity a is set to a smooth function with compact support contained in this segment.
For simplicity, we take the velocitya to be a cubic B-spline, i.e. a piecewise cubic which
is C2 with five non-C3 knots approximating a Gaussian blip. The result of integrating is
shown in Figure 6. Note several things: first, where the curvature is zero, the curve moves
with constant velocity if we follow the orthogonal trajectories. Secondly, where the curve
is moving opposite to its curvature (like an expanding circle, the part in the middle), it
is decelerating; but where it is moving with its curvature (like a contracting circle, the
parts at the two ends), it is accelerating. This acceleration at the two ends creates higher
and higher curvature until a corner forms. In the figure, the simulation is stopped just
before the curvature explodes. In the middle, the curve appears to be getting more and
more circular. As the corners form, the curve is approaching the boundary of our space.
Perhaps, with the right entropy condition, one can prolong the solution past the corners
with a suitable piecewiseC1 curve.

Fig. 6. The forward integration of the geodesic equation whenA = 0, starting from a straight line
in the direction given by a smooth bump-like vector field. Note that two corner-like singularities
with curvature going to∞ are about to form.

Although this calculation assumesA = 0, one will find very similar geodesics when
A is much smaller than 1/κ2,1/(κs log(a)s) andκ/κss , so that the dominant terms in
the geodesic equation are those without anA. In other words, geodesics between large
smooth curves are basically the same as those withA = 0.

5.4. Several geodesic triangles inBe. We have examined dilations, translations and the
evolution of blips. We look next at rotations. To get a pure rotational situation, we con-
sider ellipses centered at(0,0) with the same eccentricity 3 and maximum radius 1, but
differently oriented. We take three such ellipses, with orientations differing by 60◦ and
120◦ degrees. Joining each pair by a geodesic, we get a triangle inBe.
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We wanted to examine whether along the geodesic joining two such ellipses (a) one
ellipse rotates into the other or (b) the initial ellipse shrinks towards a circle, while the
final ellipse grows, independently of one another. It turns out that, depending on the value
ofA, both can happen. Note that we get similar geodesics by either changingA or making
the ellipses smaller or larger withA held fixed. For eachA, we get an absolute distance
scale with unit 1/

√
A and, if the ellipses are bigger than this, (b) dominates, while, if

smaller, (a) dominates.

The results are shown in Figure 7. We have taken the three valuesA = 1,0.1 and
0.01. For each value, on the top, we show the geodesic joining two of the ellipses as
a sequence of curves in their common ambientR2. Below this, we show the triple of
geodesics as a triangle, by displaying the intermediate curves as small shapes along lines
joining the ellipses. This Euclidean triangle is being used purely for display, to indicate
that the computed structure is a triangle inBe. Note that forA = 1, the intermediate
shapes are very close to ellipses, whose axes are rotating; while forA = 0.01, the bulges
in one ellipse shrink while those of the other grow.

Fig. 7. Top row: Geodesics in three metrics joining the same two ellipses. The ellipses have ec-
centricity 3, the same center and are at 60◦ degree angles to each other. At left,A = 1; in middle
A = 0.1; on rightA = 0.01. Bottom row: Geodesic triangles inBe formed by joining three el-
lipses at angles of 0, 60 and 120 degrees, for the same three values ofA. Here the intermediate
shapes are just rotated versions of the geodesic in the top row but are laid out on a plane triangle
for visualization purposes.

We can also compute the angles inBe between the sides of this triangle. They turn
out to be 34◦ whenA = 1, i.e. the angle sum for the triangle is 102◦, much less thanπ
radians, showing strong negative sectional curvature in the plane containing this triangle.
But if A = 0.1 or 0.01, the angle is 77◦ and 69◦ respectively, giving more thanπ radians
in the triangle. Thus the sectional curvature is positive for such small values ofA.
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5.5. Notes on the numerical simulations.All simulations in this paper were carried out
in MatLab. The forward integration for the geodesic equation forA = 0 was carried out
by the simplest possible finite difference scheme. This seems very stable and reliable.
Solving for the geodesics was done using the MatLab minimization routinefminunc
using both its medium and large scale modes. This, however, was quite unstable due to
discretization artifacts. A general path between two curves was represented by a matrix
of points inR2, approximating each curve by a polygon and sampling the path discretely.
The difficulty is that when the polygons have very acute angles, the discretization tends
to be highly inaccurate because of the high curvature localized at one vertex. Initially, in
order to minimize the number of variables in the problem, we tried to use small numbers
of samples and higher order accurate discrete approximations to the derivatives. In all
these attempts, the discrete approximation ‘cheated’ by finding minima to the energy of
the path with polygons with very small angles. The only way we got around this was to use
first order accurate expressions for the derivatives and relatively large numbers of samples
(e.g. 48 points on each curve, 20 samples along the geodesic, hence 2× 20× 48 = 1920
variables in the expression for the energy).

Another problem is that the energy only depends on the path of unparametrized curves
and is independent of the parametrization. To solve this, we added a term to the energy
which is minimized by constant speed parametrizations. This still leaves a possibly wan-
dering basepoint, and we addedε times another term which asked that all points on each
curve should move as normally as possible. In practice, if the initialization was reason-
able, this term was not needed. The final discrete energy that was minimized was this. Let
xi,j be theith sample point on thej th curveCj . For each(i, j), estimate the sum of the
squared curvature ofCj plus the squared acceleration of the parametrization by

k(i, j) =
1

2

(
1

‖xi−1,j − xi,j‖4
+

1

‖xi,j − xi+1,j‖
4

)
· ‖xi−1,j − 2xi,j + xi+1,j‖

2.

(The harmonic mean of the segment lengths is used here to further force the parametriza-
tion to be uniform.) Then, for each(i, j), the four trianglest = {a = (i, j), b =

(i ± 1, j), c = (i, j ± 1)} around(i, j) are considered and the energy is taken to be

∑
i,j,t

(
〈(xa − xb), (xa − xc)

⊥
〉
2
+ ε〈(xa − xb), (xa − xc)〉

2

‖xa − xb‖

)
(1 + Ak(a)).

We make no guarantees about the accuracy of this simulation! The results, however, seem
to be stable and reasonable.
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